\[ y'(x)=\frac {y(x) (x y(x)+1)}{x \left (x^3 y(x)^4-x y(x)-1\right )} \] ✓ Mathematica : cpu = 0.180017 (sec), leaf count = 1993
\[\left \{\left \{y(x)\to \frac {c_1}{4}-\frac {1}{2} \sqrt {\frac {c_1^2}{4}+\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {3 x c_1+8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}}-\frac {1}{2} \sqrt {\frac {c_1^2}{2}-\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {-3 x c_1-8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}-\frac {c_1^3-\frac {4}{x^2}}{4 \sqrt {\frac {c_1^2}{4}+\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {3 x c_1+8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}}}}\right \},\left \{y(x)\to \frac {c_1}{4}-\frac {1}{2} \sqrt {\frac {c_1^2}{4}+\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {3 x c_1+8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}}+\frac {1}{2} \sqrt {\frac {c_1^2}{2}-\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {-3 x c_1-8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}-\frac {c_1^3-\frac {4}{x^2}}{4 \sqrt {\frac {c_1^2}{4}+\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {3 x c_1+8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}}}}\right \},\left \{y(x)\to \frac {c_1}{4}+\frac {1}{2} \sqrt {\frac {c_1^2}{4}+\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {3 x c_1+8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}}-\frac {1}{2} \sqrt {\frac {c_1^2}{2}-\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {-3 x c_1-8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}+\frac {c_1^3-\frac {4}{x^2}}{4 \sqrt {\frac {c_1^2}{4}+\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {3 x c_1+8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}}}}\right \},\left \{y(x)\to \frac {c_1}{4}+\frac {1}{2} \sqrt {\frac {c_1^2}{4}+\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {3 x c_1+8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}}+\frac {1}{2} \sqrt {\frac {c_1^2}{2}-\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {-3 x c_1-8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}+\frac {c_1^3-\frac {4}{x^2}}{4 \sqrt {\frac {c_1^2}{4}+\frac {\sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}{6 x^3}+\frac {3 x c_1+8}{3 \sqrt [3]{36 c_1^2 x^6+27 x^5+\sqrt {x^9 \left (216 x^3 \left (6 c_1-1\right ) c_1^3+216 x^2 c_1^2-9 x \left (512 c_1-81\right )-4096\right )}}}}}}\right \}\right \}\]
✓ Maple : cpu = 0.159 (sec), leaf count = 27
\[ \left \{ -{\frac {1}{3\,{x}^{3} \left ( y \left ( x \right ) \right ) ^{3}}}-{\frac {1}{2\,{x}^{2} \left ( y \left ( x \right ) \right ) ^{2}}}-y \left ( x \right ) +{\it \_C1}=0 \right \} \]