\[ y'(x)=e^{-x^2} x \left (e^{3 x^2} y(x)^3+e^{2 x^2} y(x)^2+1\right ) \] ✓ Mathematica : cpu = 0.174021 (sec), leaf count = 123
\[\text {Solve}\left [\frac {11}{3} \text {RootSum}\left [11 \text {$\#$1}^3+15 \sqrt [3]{11} \text {$\#$1}+11\& ,\frac {\log \left (\frac {e^{x^2} x \left (3 e^{x^2} y(x)+1\right )}{\sqrt [3]{11} \sqrt [3]{e^{3 x^2} x^3}}-\text {$\#$1}\right )}{11 \text {$\#$1}^2+5 \sqrt [3]{11}}\& \right ]=c_1+\frac {1}{18} 11^{2/3} e^{-2 x^2} \left (e^{3 x^2} x^3\right )^{2/3},y(x)\right ]\]
✓ Maple : cpu = 0.082 (sec), leaf count = 44
\[ \left \{ y \left ( x \right ) ={\frac {-11\,{\it RootOf} \left ( -5\,{x}^{2}+20250\,\int ^{{\it \_Z}}\! \left ( 121\,{{\it \_a}}^{3}+3375\,{\it \_a}-3375 \right ) ^{-1}{d{\it \_a}}+6\,{\it \_C1} \right ) -15}{45\,{{\rm e}^{{x}^{2}}}}} \right \} \]