\[ y'(x)=\frac {1}{16} x (y(x)+1)^2 (-\log (y(x)-1)+\log (y(x)+1)+2 \log (x))^2 \] ✗ Mathematica : cpu = 300.001 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.555 (sec), leaf count = 105
\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{\frac {1}{4\,{\it \_a}+4} \left ( {\frac {{x}^{2} \left ( {\it \_a}+1 \right ) \left ( \ln \left ( {\it \_a}+1 \right ) \right ) ^{2}}{4}}+{x}^{2} \left ( -{\frac {\ln \left ( {\it \_a}-1 \right ) }{2}}+\ln \left ( x \right ) \right ) \left ( {\it \_a}+1 \right ) \ln \left ( {\it \_a}+1 \right ) +{\frac {{x}^{2} \left ( {\it \_a}+1 \right ) \left ( \ln \left ( {\it \_a}-1 \right ) \right ) ^{2}}{4}}-{x}^{2}\ln \left ( x \right ) \left ( {\it \_a}+1 \right ) \ln \left ( {\it \_a}-1 \right ) +{x}^{2} \left ( {\it \_a}+1 \right ) \left ( \ln \left ( x \right ) \right ) ^{2}-4\,{\it \_a}+4 \right ) ^{-1}}\,{\rm d}{\it \_a}-{\frac {\ln \left ( x \right ) }{16}}-{\it \_C1}=0 \right \} \]