\[ y'(x)=\frac {x F\left (\frac {y(x)^2-b}{x^2}\right )}{y(x)} \] ✓ Mathematica : cpu = 24.7283 (sec), leaf count = 188
\[\text {Solve}\left [c_1=\int _1^{y(x)} \left (\frac {K[2]}{x^2 F\left (\frac {K[2]^2-b}{x^2}\right )-K[2]^2+b}-\int _1^x -\frac {2 K[2] \left (\left (b-K[2]^2\right ) F'\left (\frac {K[2]^2-b}{K[1]^2}\right )+K[1]^2 F\left (\frac {K[2]^2-b}{K[1]^2}\right )\right )}{K[1] \left (K[1]^2 F\left (\frac {K[2]^2-b}{K[1]^2}\right )-K[2]^2+b\right )^2} \, dK[1]\right ) \, dK[2]+\int _1^x -\frac {K[1] F\left (\frac {y(x)^2-b}{K[1]^2}\right )}{K[1]^2 F\left (\frac {y(x)^2-b}{K[1]^2}\right )+b-y(x)^2} \, dK[1],y(x)\right ]\]
✓ Maple : cpu = 0.227 (sec), leaf count = 67
\[ \left \{ y \left ( x \right ) =\sqrt {{\it RootOf} \left ( -2\,\ln \left ( x \right ) +\int ^{{\it \_Z}}\! \left ( F \left ( {\it \_a} \right ) -{\it \_a} \right ) ^{-1}{d{\it \_a}}+2\,{\it \_C1} \right ) {x}^{2}+b},y \left ( x \right ) =-\sqrt {{\it RootOf} \left ( -2\,\ln \left ( x \right ) +\int ^{{\it \_Z}}\! \left ( F \left ( {\it \_a} \right ) -{\it \_a} \right ) ^{-1}{d{\it \_a}}+2\,{\it \_C1} \right ) {x}^{2}+b} \right \} \]