2.509   ODE No. 509

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ 9 \left (x^2-1\right ) y(x)^4 y'(x)^2-4 x^2-6 x y(x)^5 y'(x)=0 \] Mathematica : cpu = 300. (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 2.011 (sec), leaf count = 212

\[ \left \{ y \left ( x \right ) =\sqrt [6]{-4\,{x}^{2}+4},y \left ( x \right ) =-\sqrt [6]{-4\,{x}^{2}+4},y \left ( x \right ) =-{\frac {1+i\sqrt {3}}{2}\sqrt [6]{-4\,{x}^{2}+4}},y \left ( x \right ) ={\frac {1+i\sqrt {3}}{2}\sqrt [6]{-4\,{x}^{2}+4}},y \left ( x \right ) =-{\frac {i\sqrt {3}-1}{2}\sqrt [6]{-4\,{x}^{2}+4}},y \left ( x \right ) ={\frac {i\sqrt {3}-1}{2}\sqrt [6]{-4\,{x}^{2}+4}},y \left ( x \right ) ={\frac {\sqrt [3]{4}}{2\,{\it \_C1}}\sqrt [3]{ \left ( -4\,{{\it \_C1}}^{2}+{x}^{2}-1 \right ) {{\it \_C1}}^{2}}},y \left ( x \right ) =-{\frac {\sqrt [3]{4} \left ( 1+i\sqrt {3} \right ) }{4\,{\it \_C1}}\sqrt [3]{ \left ( -4\,{{\it \_C1}}^{2}+{x}^{2}-1 \right ) {{\it \_C1}}^{2}}},y \left ( x \right ) ={\frac {\sqrt [3]{4} \left ( i\sqrt {3}-1 \right ) }{4\,{\it \_C1}}\sqrt [3]{ \left ( -4\,{{\it \_C1}}^{2}+{x}^{2}-1 \right ) {{\it \_C1}}^{2}}} \right \} \]