\[ \left (2 x^2 y(x)^3+x y(x)^4+2 y(x)+x\right ) y'(x)+y(x)^5+y(x)=0 \] ✓ Mathematica : cpu = 0.430521 (sec), leaf count = 575
\[\left \{\left \{y(x)\to \frac {\frac {2 c_1 \left (c_1+3 x^2\right )}{\sqrt [3]{\frac {9}{2} \left (c_1^2+3\right ) x^2+\frac {3}{2} \sqrt {3} \sqrt {-4 c_1^3 x^6+\left (-c_1^4+18 c_1^2+27\right ) x^4+4 c_1^3 x^2}+c_1^3}}+2^{2/3} \sqrt [3]{9 \left (c_1^2+3\right ) x^2+3 \sqrt {3} \sqrt {-4 c_1^3 x^6+\left (-c_1^4+18 c_1^2+27\right ) x^4+4 c_1^3 x^2}+2 c_1^3}+2 c_1}{6 x}\right \},\left \{y(x)\to \frac {-\frac {2 i \left (\sqrt {3}-i\right ) c_1 \left (c_1+3 x^2\right )}{\sqrt [3]{\frac {9}{2} \left (c_1^2+3\right ) x^2+\frac {3}{2} \sqrt {3} \sqrt {-4 c_1^3 x^6+\left (-c_1^4+18 c_1^2+27\right ) x^4+4 c_1^3 x^2}+c_1^3}}+i 2^{2/3} \left (\sqrt {3}+i\right ) \sqrt [3]{9 \left (c_1^2+3\right ) x^2+3 \sqrt {3} \sqrt {-4 c_1^3 x^6+\left (-c_1^4+18 c_1^2+27\right ) x^4+4 c_1^3 x^2}+2 c_1^3}+4 c_1}{12 x}\right \},\left \{y(x)\to \frac {\frac {2 i \left (\sqrt {3}+i\right ) c_1 \left (c_1+3 x^2\right )}{\sqrt [3]{\frac {9}{2} \left (c_1^2+3\right ) x^2+\frac {3}{2} \sqrt {3} \sqrt {-4 c_1^3 x^6+\left (-c_1^4+18 c_1^2+27\right ) x^4+4 c_1^3 x^2}+c_1^3}}-2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{9 \left (c_1^2+3\right ) x^2+3 \sqrt {3} \sqrt {-4 c_1^3 x^6+\left (-c_1^4+18 c_1^2+27\right ) x^4+4 c_1^3 x^2}+2 c_1^3}+4 c_1}{12 x}\right \}\right \}\]
✓ Maple : cpu = 0.196 (sec), leaf count = 583
\[ \left \{ y \left ( x \right ) ={\frac {1}{12\,{\it \_C1}\,x} \left ( \left ( -12\,i{x}^{2}{\it \_C1}-i \left ( 108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8 \right ) ^{{\frac {2}{3}}}+4\,i \right ) \sqrt {3}+12\,{x}^{2}{\it \_C1}- \left ( \sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}+2 \right ) ^{2} \right ) {\frac {1}{\sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}}}},y \left ( x \right ) ={\frac {1}{12\,{\it \_C1}\,x} \left ( \left ( 12\,i{x}^{2}{\it \_C1}+i \left ( 108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8 \right ) ^{{\frac {2}{3}}}-4\,i \right ) \sqrt {3}+12\,{x}^{2}{\it \_C1}- \left ( \sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}+2 \right ) ^{2} \right ) {\frac {1}{\sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+18\,{{\it \_C1}}^{2}{x}^{2}+ \left ( 4\,{x}^{4}-4 \right ) {\it \_C1}-{x}^{2}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}}}},y \left ( x \right ) ={\frac {1}{6\,{\it \_C1}\,x}\sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+4\,{\it \_C1}\,{x}^{4}+18\,{{\it \_C1}}^{2}{x}^{2}-{x}^{2}-4\,{\it \_C1}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}}-{\frac {6\,{x}^{2}{\it \_C1}-2}{3\,{\it \_C1}\,x}{\frac {1}{\sqrt [3]{108\,{{\it \_C1}}^{3}{x}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_C1}}^{4}{x}^{2}+4\,{\it \_C1}\,{x}^{4}+18\,{{\it \_C1}}^{2}{x}^{2}-{x}^{2}-4\,{\it \_C1}}x{\it \_C1}+36\,{x}^{2}{\it \_C1}-8}}}}-{\frac {1}{3\,{\it \_C1}\,x}} \right \} \]