\[ x (2 y(x)+x-1) y'(x)-y(x) (y(x)+2 x+1)=0 \] ✓ Mathematica : cpu = 15.0399 (sec), leaf count = 451
\[\left \{\left \{y(x)\to -\frac {\sqrt [3]{2} x}{\sqrt [3]{-27 c_1^2 x^2+\sqrt {108 c_1^3 x^3+\left (27 c_1^2 x-27 c_1^2 x^2\right ){}^2}+27 c_1^2 x}}+\frac {\sqrt [3]{-27 c_1^2 x^2+\sqrt {108 c_1^3 x^3+\left (27 c_1^2 x-27 c_1^2 x^2\right ){}^2}+27 c_1^2 x}}{3 \sqrt [3]{2} c_1}+x-1\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{-27 c_1^2 x^2+\sqrt {108 c_1^3 x^3+\left (27 c_1^2 x-27 c_1^2 x^2\right ){}^2}+27 c_1^2 x}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-27 c_1^2 x^2+\sqrt {108 c_1^3 x^3+\left (27 c_1^2 x-27 c_1^2 x^2\right ){}^2}+27 c_1^2 x}}{6 \sqrt [3]{2} c_1}+x-1\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{-27 c_1^2 x^2+\sqrt {108 c_1^3 x^3+\left (27 c_1^2 x-27 c_1^2 x^2\right ){}^2}+27 c_1^2 x}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-27 c_1^2 x^2+\sqrt {108 c_1^3 x^3+\left (27 c_1^2 x-27 c_1^2 x^2\right ){}^2}+27 c_1^2 x}}{6 \sqrt [3]{2} c_1}+x-1\right \}\right \}\]
✓ Maple : cpu = 0.155 (sec), leaf count = 391
\[ \left \{ y \left ( x \right ) ={\frac {1}{80\,{\it \_C1}} \left ( -3\, \left ( x \left ( \sqrt {5}\sqrt {{\frac {80\, \left ( x-1 \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+20\,x-20 \right ) {{\it \_C1}}^{2} \right ) ^{2/3} \left ( 1+i\sqrt {3} \right ) \sqrt [3]{5}+3\, \left ( x \left ( i\sqrt {3}-1 \right ) {5}^{2/3}+{\frac {80\,x-80}{3}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\, \left ( x-1 \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+20\,x-20 \right ) {{\it \_C1}}^{2}}} \right ) {\it \_C1} \right ) {\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\, \left ( x-1 \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+20\,x-20 \right ) {{\it \_C1}}^{2}}}}},y \left ( x \right ) ={\frac {1}{80\,{\it \_C1}} \left ( 3\, \left ( x \left ( \sqrt {5}\sqrt {{\frac {80\, \left ( x-1 \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+20\,x-20 \right ) {{\it \_C1}}^{2} \right ) ^{2/3} \left ( i\sqrt {3}-1 \right ) \sqrt [3]{5}-3\, \left ( x \left ( 1+i\sqrt {3} \right ) {5}^{2/3}-{\frac {80\,x-80}{3}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\, \left ( x-1 \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+20\,x-20 \right ) {{\it \_C1}}^{2}}} \right ) {\it \_C1} \right ) {\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\, \left ( x-1 \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+20\,x-20 \right ) {{\it \_C1}}^{2}}}}},y \left ( x \right ) ={\frac {3\,\sqrt [3]{5}}{40\,{\it \_C1}}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}-160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}+20\,x-20 \right ) {{\it \_C1}}^{2}}}+{\frac {3\,x{5}^{2/3}}{40}{\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}-160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}+20\,x-20 \right ) {{\it \_C1}}^{2}}}}}+x-1 \right \} \]