\[ f(x) y(x)^2+2 y(x) y''(x)-3 y'(x)^2=0 \] ✗ Mathematica : cpu = 11.2731 (sec), leaf count = 0 , could not solve
DSolve[f[x]*y[x]^2 - 3*Derivative[1][y][x]^2 + 2*y[x]*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.203 (sec), leaf count = 60
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) ={\frac { \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}}{2}}-{\frac {f \left ( {\it \_a} \right ) }{2}} \right \} , \left \{ {\it \_a}=x,{\it \_b} \left ( {\it \_a} \right ) ={\frac {{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }{y \left ( x \right ) }} \right \} , \left \{ x={\it \_a},y \left ( x \right ) ={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right \} ] \right ) \right \} \]