2.17   ODE No. 17

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)y(x)23y(x)+4=0 Mathematica : cpu = 0.0247082 (sec), leaf count = 30

{{y(x)4e5(c1+x)1e5(c1+x)1}}

Maple : cpu = 0.143 (sec), leaf count = 24

{y(x)=4e5x_C111+e5x_C1}

Hand solution

yy23y+4=0(1)y=3y4+y2

This is Riccati first order non-linear ODE of the form. The general form isy=P(x)+Q(x)y+R(x)y2 Where P(x)=4,Q(x)=3,R(x)=1. Using the substitution y=uuR(x)=uu thenu=yuu=yuyu=y(yu)(3y4+y2)u=y2u3(uu)u+4uy2u=3u+4u

Henceu3u4u=0 This is standard second order ODE. The characteristic equation is  λ23λ4=0, with roots b±b24ac2a=3±9+162=3±52={4,1}, henceu(x)=c1e4x+c2ex Andu(x)=c14e4xc2ex Since y=uu then y(x)=c14e4x+c2exc1e4x+c2ex=c1c24e4x+exc1c2e4x+ex

Let c1c2=C1 theny(x)=4C1e4x+exC1e4x+ex Dividing by exy(x)=4C1e5x+1C1e5x+1 This is the same result given by CAS. To see it better, let C2=C1 then the above becomesy(x)=4C2e5x+1C2e5x+1=4C2e5x+1C2e5x1