\[ a x y'(x)+y(x) \left (b x^2+c x+d\right )+\left (x^2-1\right ) y''(x)=0 \] ✗ Mathematica : cpu = 2.36073 (sec), leaf count = 0 , DifferentialRoot result
\[\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\left (b \unicode {f817}^2+c \unicode {f817}+d\right ) \unicode {f818}(\unicode {f817})+\unicode {f817} a \unicode {f818}'(\unicode {f817})+\left (\unicode {f817}^2-1\right ) \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(0)=c_1,\unicode {f818}'(0)=c_2\right \}\right )(x)\right \}\right \}\]
✓ Maple : cpu = 0.265 (sec), leaf count = 134
\[ \left \{ y \left ( x \right ) = \left ( {x}^{2}-1 \right ) ^{-{\frac {a}{4}}}{{\rm e}^{\sqrt {-b}x}} \left ( \left ( {\frac {x}{2}}-{\frac {1}{2}} \right ) ^{{\frac {a}{4}}} \left ( {\frac {x}{2}}+{\frac {1}{2}} \right ) ^{1-{\frac {a}{4}}}{\it HeunC} \left ( 4\,\sqrt {-b},1-{\frac {a}{2}},{\frac {a}{2}}-1,2\,c,d-c-{\frac {{a}^{2}}{8}}+b+{\frac {1}{2}},{\frac {x}{2}}+{\frac {1}{2}} \right ) {\it \_C2}+ \left ( \left ( x-1 \right ) \left ( 1+x \right ) \right ) ^{{\frac {a}{4}}}{\it HeunC} \left ( 4\,\sqrt {-b},{\frac {a}{2}}-1,{\frac {a}{2}}-1,2\,c,d-c-{\frac {{a}^{2}}{8}}+b+{\frac {1}{2}},{\frac {x}{2}}+{\frac {1}{2}} \right ) {\it \_C1} \right ) \right \} \]