2.100   ODE No. 100

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

a+xy(x)+xy(x)2=0 Mathematica : cpu = 0.00914194 (sec), leaf count = 133

{{y(x)ia(c12)xJ0(2iax)+c1(J1(2iax)iaxJ2(2iax))2(c11)xJ1(2iax)}}

Maple : cpu = 0.085 (sec), leaf count = 59

{y(x)=1a(J0(2ax)_C1+Y0(2ax))1x(_C1J1(2ax)+Y1(2ax))1}

Hand solution

xy+xy2+a=0y=axy2

This is Riccati first order non-linear. Let y=uuR=uu, hence y=uu(u)2u2. Equating this to RHS of the above givesuu(u)2u2=ax(uu)2uu=axu+axu=0

This is linear second order, an Emden Fowler ODE, with removal singularity. Solved using power series method. The solution isu=C1xBesselJ(1,2ax)+C2xBesselY(1,2ax) But ddxBesselJ(1,2ax)=ax(BesselJ(0,2ax)121axBesselJ(1,2ax)) AndddxBesselY(1,2ax)=ax(BesselY(0,2ax)121axBesselY(1,2ax)) Therefore, u=C1(12xBesselJ(1,2ax)+xax(BesselJ(0,2ax)121axBesselJ(1,2ax)))+C2(12xBesselY(1,2ax)+xax(BesselY(0,2ax)121axBesselY(1,2ax)))

Which is simplified tou=C1aBesselJ(0,2ax)+C2aBesselY(0,2ax) Therefore, from y=uu, the solution isy=C1aBesselJ(0,2ax)+C2aBesselY(0,2ax)C1xBesselJ(1,2ax)+C2xBesselY(1,2ax) Let C=C1C2, hencey=CaBesselJ(0,2ax)+ aBesselY(0,2ax)CxBesselJ(1,2ax)+ xBesselY(1,2ax) Verification

restart; 
ode:=x*diff(y(x),x)+x*y(x)^2+a=0; 
num:=_C1*sqrt(a)*BesselJ(0,2*sqrt(a)*sqrt(x))+sqrt(a)*BesselY(0,2*sqrt(a)*sqrt(x)); 
den:=_C1*sqrt(x)*BesselJ(1,2*sqrt(a)*sqrt(x))+sqrt(x)*BesselY(1,2*sqrt(a)*sqrt(x)); 
my_solution:=num/den; 
odetest(y(x)=my_solution,ode); 
0