\[ y'(x)=\frac {x^6+6 x^5-12 x^4 y(x)+12 x^4-48 x^3 y(x)+16 x^3+48 x^2 y(x)^2-48 x^2 y(x)+16 x^2+96 x y(x)^2-32 x y(x)-64 y(x)^3-32 x}{16 x^2-64 y(x)+32 x-64} \] ✓ Mathematica : cpu = 0.683326 (sec), leaf count = 137
\[\text {Solve}\left [2 \text {RootSum}\left [\text {$\#$1}^4+4 \text {$\#$1}^3-8 \text {$\#$1}^2 y(x)-16 \text {$\#$1} y(x)-8 \text {$\#$1}+16 y(x)^2+16 y(x)+8\& ,\frac {\text {$\#$1}^2 (-\log (x-\text {$\#$1}))+4 y(x) \log (x-\text {$\#$1})-2 \text {$\#$1} \log (x-\text {$\#$1})+3 \log (x-\text {$\#$1})}{-\text {$\#$1}^2-2 \text {$\#$1}+4 y(x)+2}\& \right ]+5 x=5 c_1+4 \log \left (x^2-4 y(x)+2 x+4\right ),y(x)\right ]\]
✓ Maple : cpu = 0.184 (sec), leaf count = 70
\[ \left \{ x-{\frac {4}{5}\ln \left ( y \left ( x \right ) -{\frac {{x}^{2}}{4}}-{\frac {x}{2}}-1 \right ) }+{\frac {2}{5}\ln \left ( 2\, \left ( y \left ( x \right ) -1/4\,{x}^{2}-x/2 \right ) ^{2}+2\,y \left ( x \right ) -{\frac {{x}^{2}}{2}}-x+1 \right ) }-{\frac {2}{5}\arctan \left ( -2\,y \left ( x \right ) +{\frac {{x}^{2}}{2}}+x-1 \right ) }-{\it \_C1}=0 \right \} \]