2.532   ODE No. 532

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ a y'(x)^3+b y'(x)^2+c y'(x)-d-y(x)=0 \] Mathematica : cpu = 300. (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 0.157 (sec), leaf count = 848

\[ \left \{ x-\int ^{y \left ( x \right ) }\!6\,{\frac {a\sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}}}{ \left ( 12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3} \right ) ^{2/3}-2\,b\sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}}-12\,ac+4\,{b}^{2}}}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!-2\,{\frac {a\sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}}}{ \left ( i\sqrt {3}-1 \right ) \left ( -1/6\, \left ( 12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3} \right ) ^{2/3}-1/6\,b \left ( 1+i\sqrt {3} \right ) \sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}}+ \left ( ac-1/3\,{b}^{2} \right ) \left ( i\sqrt {3}-1 \right ) \right ) }}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!-2\,{\frac {a\sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}}}{ \left ( 1/6\, \left ( 12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3} \right ) ^{2/3}-1/6\,b \left ( i\sqrt {3}-1 \right ) \sqrt [3]{12\,\sqrt {3}\sqrt {27\, \left ( d+{\it \_a} \right ) ^{2}{a}^{2}+18\, \left ( \left ( d+{\it \_a} \right ) b+2/9\,{c}^{2} \right ) ca+ \left ( -4\,d-4\,{\it \_a} \right ) {b}^{3}-{b}^{2}{c}^{2}}a+ \left ( 108\,d+108\,{\it \_a} \right ) {a}^{2}+36\,abc-8\,{b}^{3}}+ \left ( ac-1/3\,{b}^{2} \right ) \left ( 1+i\sqrt {3} \right ) \right ) \left ( 1+i\sqrt {3} \right ) }}{d{\it \_a}}-{\it \_C1}=0 \right \} \]