\[ x^2 y'(x)^2-y(x)^4+y(x)^2=0 \] ✓ Mathematica : cpu = 0.0359298 (sec), leaf count = 103
\[\left \{\left \{y(x)\to \sqrt {\sec ^2\left (c_1-\log (x)\right )} \left (-\cot \left (c_1-\log (x)\right )\right )\right \},\left \{y(x)\to \sqrt {\sec ^2\left (c_1-\log (x)\right )} \cot \left (c_1-\log (x)\right )\right \},\left \{y(x)\to \sqrt {\sec ^2\left (c_1+\log (x)\right )} \left (-\cot \left (c_1+\log (x)\right )\right )\right \},\left \{y(x)\to \sqrt {\sec ^2\left (c_1+\log (x)\right )} \cot \left (c_1+\log (x)\right )\right \}\right \}\]
✓ Maple : cpu = 0.149 (sec), leaf count = 62
\[ \left \{ y \left ( x \right ) =-1,y \left ( x \right ) =1,y \left ( x \right ) ={\frac {1}{\tan \left ( -\ln \left ( x \right ) +{\it \_C1} \right ) }\sqrt { \left ( \tan \left ( -\ln \left ( x \right ) +{\it \_C1} \right ) \right ) ^{2}+1}},y \left ( x \right ) =-{\frac {1}{\tan \left ( -\ln \left ( x \right ) +{\it \_C1} \right ) }\sqrt { \left ( \tan \left ( -\ln \left ( x \right ) +{\it \_C1} \right ) \right ) ^{2}+1}} \right \} \]