\[ y'(x)=\frac {y(x)^2 \left (x^4 y(x)+2 x^2 y(x)+2 x^2-2 y(x)\right )}{x^3 \left (x^2 y(x)+x^2-y(x)\right )} \] ✓ Mathematica : cpu = 0.0240771 (sec), leaf count = 135
\[\left \{\left \{y(x)\to \frac {x^5}{\frac {\sqrt {x^5 \left (c_1-2 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\log (x)\right )\right )+\left (x^2-1\right )^2 x}}{\sqrt {\frac {1}{x^5}}}-x^3 \left (x^2-1\right )}\right \},\left \{y(x)\to -\frac {x^5}{\frac {\sqrt {x^5 \left (c_1-2 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\log (x)\right )\right )+\left (x^2-1\right )^2 x}}{\sqrt {\frac {1}{x^5}}}+\left (x^2-1\right ) x^3}\right \}\right \}\]
✓ Maple : cpu = 0.072 (sec), leaf count = 56
\[ \left \{ y \left ( x \right ) ={{x}^{2} \left ( \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{2}-{x}^{2}+1 \right ) ^{-1}},y \left ( x \right ) =-{{x}^{2} \left ( \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{2}+{x}^{2}-1 \right ) ^{-1}} \right \} \]