\[ a y'(x)^2+b x^2 y'(x)+c x y(x)=0 \] ✗ Mathematica : cpu = 300. (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.266 (sec), leaf count = 389
\[ \left \{ \int _{{\it \_b}}^{x}\!{1 \left ( -b{{\it \_a}}^{2}-\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,acy \left ( x \right ) } \right ) \left ( b{{\it \_a}}^{3}+\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,acy \left ( x \right ) }{\it \_a}+6\,ay \left ( x \right ) \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!-2\,{\frac {a}{b{x}^{3}+\sqrt {{b}^{2}{x}^{4}-4\,{\it \_f}\,acx}x+6\,a{\it \_f}}}-\int _{{\it \_b}}^{x}\!6\,{\frac {a}{ \left ( b{{\it \_a}}^{3}+\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,{\it \_f}\,ac}{\it \_a}+6\,a{\it \_f} \right ) ^{2}} \left ( 2\,{\frac {{\it \_a}\,{\it \_f}\,ac}{\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,{\it \_f}\,ac}}}+b{{\it \_a}}^{2}+\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,{\it \_f}\,ac} \right ) }\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0,\int _{{\it \_b}}^{x}\!{1 \left ( -b{{\it \_a}}^{2}+\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,acy \left ( x \right ) } \right ) \left ( b{{\it \_a}}^{3}+6\,ay \left ( x \right ) -\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,acy \left ( x \right ) }{\it \_a} \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!2\,{\frac {a}{-b{x}^{3}+\sqrt {{b}^{2}{x}^{4}-4\,{\it \_f}\,acx}x-6\,a{\it \_f}}}-\int _{{\it \_b}}^{x}\!-6\,{\frac {a}{ \left ( b{{\it \_a}}^{3}+6\,a{\it \_f}-\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,{\it \_f}\,ac}{\it \_a} \right ) ^{2}} \left ( 2\,{\frac {{\it \_a}\,{\it \_f}\,ac}{\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,{\it \_f}\,ac}}}-b{{\it \_a}}^{2}+\sqrt {{{\it \_a}}^{4}{b}^{2}-4\,{\it \_a}\,{\it \_f}\,ac} \right ) }\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0 \right \} \]