\[ y'(x) \left (b (\alpha x+\beta y(x))^2-\beta (a x+b y(x))\right )-\alpha (a x+b y(x))+a (\alpha x+\beta y(x))^2=0 \] ✓ Mathematica : cpu = 0.526221 (sec), leaf count = 39
\[\text {Solve}\left [\frac {a \beta \left (\log (a x+b y(x))+\frac {1}{\alpha x+\beta y(x)}\right )}{a \beta -\alpha b}=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.17 (sec), leaf count = 50
\[ \left \{ y \left ( x \right ) ={\frac {-ax+{{\rm e}^{{\it RootOf} \left ( {\it \_C1}\,a\beta \,x-{\it \_C1}\,\alpha \,bx-{\it \_Z}\,a\beta \,x+{\it \_Z}\,\alpha \,bx-{\it \_C1}\,\beta \,{{\rm e}^{{\it \_Z}}}+{{\rm e}^{{\it \_Z}}}{\it \_Z}\,\beta +b \right ) }}}{b}} \right \} \]