\[ x \left (x^4+x y(x)-1\right ) y'(x)-y(x) \left (-x^4+x y(x)-1\right )=0 \] ✓ Mathematica : cpu = 0.362723 (sec), leaf count = 38
\[\text {Solve}\left [\frac {c_1+2 x y(x)-2 \log \left (\frac {1}{1-x y(x)}\right )-2}{x^2 y(x)^2}+\frac {1}{x^4}=0,y(x)\right ]\]
✓ Maple : cpu = 0.113 (sec), leaf count = 98
\[ \left \{ y \left ( x \right ) ={\frac {-{\it \_C1}+{{\rm e}^{{\it RootOf} \left ( -2\,{\it \_Z}\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}+2\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}\,{x}^{4}+ \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}+{{\it \_C1}}^{2} \right ) }}}{x{{\rm e}^{{\it RootOf} \left ( -2\,{\it \_Z}\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}+2\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}\,{x}^{4}+ \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}+{{\it \_C1}}^{2} \right ) }}}} \right \} \]