\[ -a y(x)^2-b x^{2 n-2}+x^n y'(x)=0 \] ✓ Mathematica : cpu = 0.0739011 (sec), leaf count = 328
\[\left \{\left \{y(x)\to -\frac {x^n \left (\frac {1}{2} \sqrt {a} \sqrt {b} c_1 \left (-\frac {n-1}{\sqrt {a} \sqrt {b}}-\sqrt {\frac {(n-1)^2}{a b}-4}\right ) x^{\frac {1}{2} \sqrt {a} \sqrt {b} \left (-\frac {n-1}{\sqrt {a} \sqrt {b}}-\sqrt {\frac {(n-1)^2}{a b}-4}\right )-1}+\frac {1}{2} \sqrt {a} \sqrt {b} \left (\sqrt {\frac {(n-1)^2}{a b}-4}-\frac {n-1}{\sqrt {a} \sqrt {b}}\right ) x^{\frac {1}{2} \sqrt {a} \sqrt {b} \left (\sqrt {\frac {(n-1)^2}{a b}-4}-\frac {n-1}{\sqrt {a} \sqrt {b}}\right )-1}\right )}{a \left (c_1 x^{\frac {1}{2} \sqrt {a} \sqrt {b} \left (-\frac {n-1}{\sqrt {a} \sqrt {b}}-\sqrt {\frac {(n-1)^2}{a b}-4}\right )}+x^{\frac {1}{2} \sqrt {a} \sqrt {b} \left (\sqrt {\frac {(n-1)^2}{a b}-4}-\frac {n-1}{\sqrt {a} \sqrt {b}}\right )}\right )}\right \}\right \}\]
✓ Maple : cpu = 0.053 (sec), leaf count = 60
\[ \left \{ y \left ( x \right ) ={\frac {{x}^{n-1}}{2\,a} \left ( -\sqrt {4\,ab-{n}^{2}+2\,n-1}\tan \left ( {\frac {-\ln \left ( x \right ) +{\it \_C1}}{2}\sqrt {4\,ab-{n}^{2}+2\,n-1}} \right ) +n-1 \right ) } \right \} \]