\[ y(x)^2 (a y(x)+b)+2 y(x) y''(x)-y'(x)^2=0 \] ✓ Mathematica : cpu = 2.56242 (sec), leaf count = 437
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {i \sqrt {2} \text {$\#$1}^{3/2} \sqrt {\frac {4 c_1}{\text {$\#$1} \left (\sqrt {2 a c_1+b^2}-b\right )}+2} \sqrt {1-\frac {2 c_1}{\text {$\#$1} \left (\sqrt {2 a c_1+b^2}+b\right )}} F\left (i \sinh ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {c_1}{\sqrt {b^2+2 a c_1}-b}}}{\sqrt {\text {$\#$1}}}\right )|\frac {b-\sqrt {b^2+2 a c_1}}{b+\sqrt {b^2+2 a c_1}}\right )}{\sqrt {\frac {c_1}{\sqrt {2 a c_1+b^2}-b}} \sqrt {-\text {$\#$1} \left (\text {$\#$1}^2 a+2 \text {$\#$1} b-2 c_1\right )}}\& \right ]\left [c_2+x\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [\frac {i \sqrt {2} \text {$\#$1}^{3/2} \sqrt {\frac {4 c_1}{\text {$\#$1} \left (\sqrt {2 a c_1+b^2}-b\right )}+2} \sqrt {1-\frac {2 c_1}{\text {$\#$1} \left (\sqrt {2 a c_1+b^2}+b\right )}} F\left (i \sinh ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {c_1}{\sqrt {b^2+2 a c_1}-b}}}{\sqrt {\text {$\#$1}}}\right )|\frac {b-\sqrt {b^2+2 a c_1}}{b+\sqrt {b^2+2 a c_1}}\right )}{\sqrt {\frac {c_1}{\sqrt {2 a c_1+b^2}-b}} \sqrt {-\text {$\#$1} \left (\text {$\#$1}^2 a+2 \text {$\#$1} b-2 c_1\right )}}\& \right ]\left [c_2+x\right ]\right \}\right \}\]
✓ Maple : cpu = 0.101 (sec), leaf count = 71
\[ \left \{ \int ^{y \left ( x \right ) }\!-2\,{\frac {1}{\sqrt {-2\,a{{\it \_a}}^{3}-4\,b{{\it \_a}}^{2}+4\,{\it \_a}\,{\it \_C1}}}}{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!2\,{\frac {1}{\sqrt {-2\,a{{\it \_a}}^{3}-4\,b{{\it \_a}}^{2}+4\,{\it \_a}\,{\it \_C1}}}}{d{\it \_a}}-x-{\it \_C2}=0 \right \} \]