2.791   ODE No. 791

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y'(x)=\frac {\text {sech}\left (\frac {1}{x-1}\right ) \left (x^5+x^4-2 x^3 y(x)-2 x^2 y(x)+2 x^2 \cosh \left (\frac {1}{x-1}\right )+x y(x)^2+y(x)^2-x-2 x \cosh \left (\frac {1}{x-1}\right )-1\right )}{x-1} \] Mathematica : cpu = 300.004 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 18.086 (sec), leaf count = 634

\[ \left \{ y \left ( x \right ) ={1 \left ( {{x}^{2} \left ( {{\rm e}^{{\frac {{\it \_C1}}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}{{\rm e}^{2\, \left ( x-1 \right ) ^{-1}}}}}} \right ) ^{4} \left ( {{\rm e}^{{\frac {{\it \_C1}}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}}}} \right ) ^{4} \left ( {{\rm e}^{{\frac {1}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}\int \! \left ( {\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}x}{1+x}}+{\frac {x}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }}-{\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}}{1+x}}-{\frac {1}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }} \right ) ^{-1}\,{\rm d}x{{\rm e}^{2\, \left ( x-1 \right ) ^{-1}}}}}} \right ) ^{-4} \left ( {{\rm e}^{{\frac {1}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}\int \! \left ( {\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}x}{1+x}}+{\frac {x}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }}-{\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}}{1+x}}-{\frac {1}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }} \right ) ^{-1}\,{\rm d}x}}} \right ) ^{-4}}-{x}^{2}+{1 \left ( {{\rm e}^{{\frac {{\it \_C1}}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}{{\rm e}^{2\, \left ( x-1 \right ) ^{-1}}}}}} \right ) ^{4} \left ( {{\rm e}^{{\frac {{\it \_C1}}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}}}} \right ) ^{4} \left ( {{\rm e}^{{\frac {1}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}\int \! \left ( {\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}x}{1+x}}+{\frac {x}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }}-{\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}}{1+x}}-{\frac {1}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }} \right ) ^{-1}\,{\rm d}x{{\rm e}^{2\, \left ( x-1 \right ) ^{-1}}}}}} \right ) ^{-4} \left ( {{\rm e}^{{\frac {1}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}\int \! \left ( {\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}x}{1+x}}+{\frac {x}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }}-{\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}}{1+x}}-{\frac {1}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }} \right ) ^{-1}\,{\rm d}x}}} \right ) ^{-4}}+1 \right ) \left ( -1+{1 \left ( {{\rm e}^{{\frac {{\it \_C1}}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}{{\rm e}^{2\, \left ( x-1 \right ) ^{-1}}}}}} \right ) ^{4} \left ( {{\rm e}^{{\frac {{\it \_C1}}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}}}} \right ) ^{4} \left ( {{\rm e}^{{\frac {1}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}\int \! \left ( {\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}x}{1+x}}+{\frac {x}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }}-{\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}}{1+x}}-{\frac {1}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }} \right ) ^{-1}\,{\rm d}x{{\rm e}^{2\, \left ( x-1 \right ) ^{-1}}}}}} \right ) ^{-4} \left ( {{\rm e}^{{\frac {1}{ \left ( {{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \right ) ^{2}+1}\int \! \left ( {\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}x}{1+x}}+{\frac {x}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }}-{\frac {{{\rm e}^{ \left ( x-1 \right ) ^{-1}}}}{1+x}}-{\frac {1}{{{\rm e}^{ \left ( x-1 \right ) ^{-1}}} \left ( 1+x \right ) }} \right ) ^{-1}\,{\rm d}x}}} \right ) ^{-4}} \right ) ^{-1}} \right \} \]