\[ x^4 y'(x)^2-x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.961774 (sec), leaf count = 410
\[\left \{\text {Solve}\left [\frac {x \sqrt {4 x^2 y(x)+1} \left (\log (x)-\log \left (\sqrt {4 x^2 y(x)+1}+1\right )\right )}{\sqrt {4 x^4 y(x)+x^2}}+\frac {x \sqrt {4 x^2 y(x)+1} \log (y(x))-x \sqrt {4 x^2 y(x)+1} \log \left (4 x^2 y(x)+1\right )+\sqrt {4 x^4 y(x)+x^2} \log \left (\frac {1}{4 x^2 y(x)}+1\right )-\sqrt {4 x^4 y(x)+x^2} \log \left (4 x^2 y(x)+1\right )+x \sqrt {4 x^2 y(x)+1} \log \left (4 x^3 y(x)+x\right )}{2 \sqrt {4 x^4 y(x)+x^2}}=c_1,y(x)\right ],\text {Solve}\left [-\frac {x \sqrt {4 x^2 y(x)+1} \left (\log (x)-\log \left (\sqrt {4 x^2 y(x)+1}+1\right )\right )}{\sqrt {4 x^4 y(x)+x^2}}-\frac {x \sqrt {4 x^2 y(x)+1} \log (y(x))-x \sqrt {4 x^2 y(x)+1} \log \left (4 x^2 y(x)+1\right )-\sqrt {4 x^4 y(x)+x^2} \log \left (\frac {1}{4 x^2 y(x)}+1\right )+\sqrt {4 x^4 y(x)+x^2} \log \left (4 x^2 y(x)+1\right )+x \sqrt {4 x^2 y(x)+1} \log \left (4 x^3 y(x)+x\right )}{2 \sqrt {4 x^4 y(x)+x^2}}=c_1,y(x)\right ]\right \}\]
✓ Maple : cpu = 0.74 (sec), leaf count = 135
\[ \left \{ y \left ( x \right ) =-{\frac {1}{4\,{x}^{2}}},y \left ( x \right ) ={\frac {-{\it \_C1}\, \left ( -{\it \_C1}-2\,ix \right ) -{{\it \_C1}}^{2}-2\,{x}^{2}}{2\,{{\it \_C1}}^{2}{x}^{2}}},y \left ( x \right ) ={\frac {-{\it \_C1}\, \left ( -{\it \_C1}+2\,ix \right ) -{{\it \_C1}}^{2}-2\,{x}^{2}}{2\,{{\it \_C1}}^{2}{x}^{2}}},y \left ( x \right ) ={\frac {{\it \_C1}\, \left ( {\it \_C1}-2\,ix \right ) -2\,{x}^{2}-{{\it \_C1}}^{2}}{2\,{{\it \_C1}}^{2}{x}^{2}}},y \left ( x \right ) ={\frac {{\it \_C1}\, \left ( {\it \_C1}+2\,ix \right ) -2\,{x}^{2}-{{\it \_C1}}^{2}}{2\,{{\it \_C1}}^{2}{x}^{2}}} \right \} \]