\[ x y'(x)^2+x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.552009 (sec), leaf count = 181
\[\left \{\text {Solve}\left [\frac {\left (\sqrt {\frac {4 y(x)}{x}+1}-1\right ) \left (\left (\sqrt {\frac {4 y(x)}{x}+1}-1\right ) \log \left (\sqrt {\frac {4 y(x)}{x}+1}-1\right )-1\right )}{2 \left (-\frac {2 y(x)}{x}+\sqrt {\frac {4 y(x)}{x}+1}-1\right )}=c_1+\frac {\log (x)}{2},y(x)\right ],\text {Solve}\left [\frac {\left (\sqrt {\frac {4 y(x)}{x}+1}+1\right ) \left (\left (\sqrt {\frac {4 y(x)}{x}+1}+1\right ) \log \left (\sqrt {\frac {4 y(x)}{x}+1}+1\right )+1\right )}{2 \left (\frac {2 y(x)}{x}+\sqrt {\frac {4 y(x)}{x}+1}+1\right )}=c_1-\frac {\log (x)}{2},y(x)\right ]\right \}\]
✓ Maple : cpu = 0.045 (sec), leaf count = 69
\[ \left \{ y \left ( x \right ) = \left ( {\frac {1}{4} \left ( {\it lambertW} \left ( -{\frac {1}{2}{\frac {1}{\sqrt {{\frac {{\it \_C1}}{x}}}}}} \right ) \right ) ^{-2}}+{\frac {1}{2} \left ( {\it lambertW} \left ( -{\frac {1}{2}{\frac {1}{\sqrt {{\frac {{\it \_C1}}{x}}}}}} \right ) \right ) ^{-1}} \right ) x,y \left ( x \right ) = \left ( {\frac {1}{4} \left ( {\it lambertW} \left ( {\frac {1}{2}{\frac {1}{\sqrt {{\frac {{\it \_C1}}{x}}}}}} \right ) \right ) ^{-2}}+{\frac {1}{2} \left ( {\it lambertW} \left ( {\frac {1}{2}{\frac {1}{\sqrt {{\frac {{\it \_C1}}{x}}}}}} \right ) \right ) ^{-1}} \right ) x \right \} \]