\[ a x y(x)^2+y'(x)+y(x)^3=0 \] ✓ Mathematica : cpu = 0.20994 (sec), leaf count = 195
\[\text {Solve}\left [\frac {\text {Ai}'\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )-\left (-\frac {1}{2}\right )^{2/3} a^{2/3} x \text {Ai}\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )}{\text {Bi}'\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )-\left (-\frac {1}{2}\right )^{2/3} a^{2/3} x \text {Bi}\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )}+c_1=0,y(x)\right ]\]
✓ Maple : cpu = 0.091 (sec), leaf count = 62
\[ \left \{ y \left ( x \right ) =2\,{\frac {a}{{a}^{2}{x}^{2}+2\,{\it RootOf} \left ( \sqrt [3]{-2\,{a}^{2}}{{\rm Bi}\left ({\it \_Z}\right )}{\it \_C1}\,x+\sqrt [3]{-2\,{a}^{2}}x{{\rm Ai}\left ({\it \_Z}\right )}+2\,{{\rm Bi}^{(1)}\left ({\it \_Z}\right )}{\it \_C1}+2\,{{\rm Ai}^{(1)}\left ({\it \_Z}\right )} \right ) \sqrt [3]{-2\,{a}^{2}}}} \right \} \]