\[ f(x) y(x) y'(x)+g(x) y(x)^2+h(x)=0 \] ✓ Mathematica : cpu = 1.03275 (sec), leaf count = 140
\[\left \{\left \{y(x)\to -e^{\int _1^x -\frac {g(K[1])}{f(K[1])} \, dK[1]} \sqrt {2 \int _1^x -\frac {h(K[2]) \exp \left (-2 \int _1^{K[2]} -\frac {g(K[1])}{f(K[1])} \, dK[1]\right )}{f(K[2])} \, dK[2]+c_1}\right \},\left \{y(x)\to e^{\int _1^x -\frac {g(K[1])}{f(K[1])} \, dK[1]} \sqrt {2 \int _1^x -\frac {h(K[2]) \exp \left (-2 \int _1^{K[2]} -\frac {g(K[1])}{f(K[1])} \, dK[1]\right )}{f(K[2])} \, dK[2]+c_1}\right \}\right \}\]
✓ Maple : cpu = 0.079 (sec), leaf count = 124
\[ \left \{ y \left ( x \right ) ={1\sqrt {-{{\rm e}^{2\,\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \left ( 2\,\int \!{\frac {h \left ( x \right ) }{f \left ( x \right ) } \left ( {{\rm e}^{\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) ^{2}}\,{\rm d}x-{\it \_C1} \right ) } \left ( {{\rm e}^{2\,\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) ^{-1}},y \left ( x \right ) =-{1\sqrt {-{{\rm e}^{2\,\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \left ( 2\,\int \!{\frac {h \left ( x \right ) }{f \left ( x \right ) } \left ( {{\rm e}^{\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) ^{2}}\,{\rm d}x-{\it \_C1} \right ) } \left ( {{\rm e}^{2\,\int \!{\frac {g \left ( x \right ) }{f \left ( x \right ) }}\,{\rm d}x}} \right ) ^{-1}} \right \} \]