\[ -h(y(x))+3 (1-y(x)) y(x) y''(x)-2 (1-2 y(x)) y'(x)^2=0 \] ✓ Mathematica : cpu = 22.636 (sec), leaf count = 182
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}} -\frac {1}{(1-K[2])^{2/3} K[2]^{2/3} \sqrt {2 \int _1^{K[2]} -\frac {h(K[1]) \exp \left (-2 \left (\frac {2}{3} \log (1-K[1])+\frac {2}{3} \log (K[1])\right )\right )}{3 (K[1]-1) K[1]} \, dK[1]+c_1}} \, dK[2]\& \right ]\left [c_2+x\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}} \frac {1}{(1-K[3])^{2/3} K[3]^{2/3} \sqrt {2 \int _1^{K[3]} -\frac {h(K[1]) \exp \left (-2 \left (\frac {2}{3} \log (1-K[1])+\frac {2}{3} \log (K[1])\right )\right )}{3 (K[1]-1) K[1]} \, dK[1]+c_1}} \, dK[3]\& \right ]\left [c_2+x\right ]\right \}\right \}\]
✓ Maple : cpu = 0.207 (sec), leaf count = 219
\[ \left \{ \int ^{y \left ( x \right ) }\!-3\,{\frac {1}{\sqrt {-6\,{{\it \_b}}^{2}\sqrt [3]{{\it \_b}\, \left ( {\it \_b}-1 \right ) }\int \!{\frac {h \left ( {\it \_b} \right ) }{ \left ( {{\it \_b}}^{2}-{\it \_b} \right ) ^{4/3}{\it \_b}\, \left ( {\it \_b}-1 \right ) }}\,{\rm d}{\it \_b}+9\,{{\it \_b}}^{2}\sqrt [3]{{\it \_b}\, \left ( {\it \_b}-1 \right ) }{\it \_C1}+6\,{\it \_b}\,\sqrt [3]{{\it \_b}\, \left ( {\it \_b}-1 \right ) }\int \!{\frac {h \left ( {\it \_b} \right ) }{ \left ( {{\it \_b}}^{2}-{\it \_b} \right ) ^{4/3}{\it \_b}\, \left ( {\it \_b}-1 \right ) }}\,{\rm d}{\it \_b}-9\,{\it \_b}\,\sqrt [3]{{\it \_b}\, \left ( {\it \_b}-1 \right ) }{\it \_C1}}}}{d{\it \_b}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!3\,{\frac {1}{\sqrt {-6\,{{\it \_b}}^{2}\sqrt [3]{{\it \_b}\, \left ( {\it \_b}-1 \right ) }\int \!{\frac {h \left ( {\it \_b} \right ) }{ \left ( {{\it \_b}}^{2}-{\it \_b} \right ) ^{4/3}{\it \_b}\, \left ( {\it \_b}-1 \right ) }}\,{\rm d}{\it \_b}+9\,{{\it \_b}}^{2}\sqrt [3]{{\it \_b}\, \left ( {\it \_b}-1 \right ) }{\it \_C1}+6\,{\it \_b}\,\sqrt [3]{{\it \_b}\, \left ( {\it \_b}-1 \right ) }\int \!{\frac {h \left ( {\it \_b} \right ) }{ \left ( {{\it \_b}}^{2}-{\it \_b} \right ) ^{4/3}{\it \_b}\, \left ( {\it \_b}-1 \right ) }}\,{\rm d}{\it \_b}-9\,{\it \_b}\,\sqrt [3]{{\it \_b}\, \left ( {\it \_b}-1 \right ) }{\it \_C1}}}}{d{\it \_b}}-x-{\it \_C2}=0 \right \} \]