\[ f(x) (1-y(x)) y(x) y'(x)+2 (1-y(x)) y(x) y''(x)-(1-2 y(x)) y'(x)^2=0 \] ✓ Mathematica : cpu = 0.999713 (sec), leaf count = 95
\[\left \{\left \{y(x)\to \frac {1}{4} \exp \left (-i \int _1^x c_1 \left (-e^{-\int _1^{K[3]} \frac {1}{2} f(K[1]) \, dK[1]}\right ) \, dK[3]-i c_2\right ) \left (1+\exp \left (i \int _1^x c_1 \left (-e^{-\int _1^{K[3]} \frac {1}{2} f(K[1]) \, dK[1]}\right ) \, dK[3]+i c_2\right )\right ){}^2\right \}\right \}\]
✓ Maple : cpu = 0.121 (sec), leaf count = 59
\[ \left \{ y \left ( x \right ) ={\frac {1}{8\,{\it \_C2}} \left ( 4\, \left ( {{\rm e}^{{\it \_C1}\,\int \!{{\rm e}^{-1/2\,\int \!f \left ( x \right ) \,{\rm d}x}}\,{\rm d}x}} \right ) ^{2}{{\it \_C2}}^{2}+4\,{{\rm e}^{{\it \_C1}\,\int \!{{\rm e}^{-1/2\,\int \!f \left ( x \right ) \,{\rm d}x}}\,{\rm d}x}}{\it \_C2}+1 \right ) \left ( {{\rm e}^{{\it \_C1}\,\int \!{{\rm e}^{-{\frac {\int \!f \left ( x \right ) \,{\rm d}x}{2}}}}\,{\rm d}x}} \right ) ^{-1}} \right \} \]