\[ x^2 y''(x)+\frac {y(x)}{\log (x)}-e^x x (x \log (x)+2)=0 \] ✗ Mathematica : cpu = 0.206872 (sec), leaf count = 0 , could not solve
DSolve[-(E^x*x*(2 + x*Log[x])) + y[x]/Log[x] + x^2*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.141 (sec), leaf count = 73
\[ \left \{ y \left ( x \right ) ={\it \_C2}\,\ln \left ( x \right ) + \left ( -{\it Ei} \left ( 1,-\ln \left ( x \right ) \right ) \ln \left ( x \right ) -x \right ) {\it \_C1}- \left ( -\int \!{\frac { \left ( {\it Ei} \left ( 1,-\ln \left ( x \right ) \right ) \ln \left ( x \right ) +x \right ) {{\rm e}^{x}} \left ( 2+x\ln \left ( x \right ) \right ) }{x}}\,{\rm d}x+\ln \left ( x \right ) {{\rm e}^{x}} \left ( {\it Ei} \left ( 1,-\ln \left ( x \right ) \right ) \ln \left ( x \right ) +x \right ) \right ) \ln \left ( x \right ) \right \} \]