\[ -e^{-\frac {x^{3/2}}{3}} x+y''(x)+\sqrt {x} y'(x)+\left (\frac {x}{4}+\frac {1}{4 \sqrt {x}}-9\right ) y(x)=0 \] ✓ Mathematica : cpu = 0.0763434 (sec), leaf count = 70
\[\left \{\left \{y(x)\to c_1 e^{-\frac {1}{3} \left (\sqrt {x}+9\right ) x}+\frac {1}{6} c_2 e^{6 x-\frac {1}{3} \left (\sqrt {x}+9\right ) x}-\frac {1}{9} e^{3 x-\frac {1}{3} \left (\sqrt {x}+9\right ) x} x\right \}\right \}\]
✓ Maple : cpu = 0.08 (sec), leaf count = 38
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {1}{3}{x}^{{\frac {3}{2}}}}}}\sinh \left ( 3\,x \right ) {\it \_C2}+{{\rm e}^{-{\frac {1}{3}{x}^{{\frac {3}{2}}}}}}\cosh \left ( 3\,x \right ) {\it \_C1}-{\frac {x}{9}{{\rm e}^{-{\frac {1}{3}{x}^{{\frac {3}{2}}}}}}} \right \} \]