\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {1}{x \left ( 1+x \right ) } \left ( {{\rm e}^{-{\frac {y \left ( x \right ) }{x}}}}y \left ( x \right ) x+{{\rm e}^{-{\frac {y \left ( x \right ) }{x}}}}y \left ( x \right ) +{{\rm e}^{-{\frac {y \left ( x \right ) }{x}}}}{x}^{2}+{{\rm e}^{-{\frac {y \left ( x \right ) }{x}}}}x+{x}^{4} \right ) {{\rm e}^{{\frac {y \left ( x \right ) }{x}}}}}=0} \]
Mathematica: cpu = 1.567699 (sec), leaf count = 39 \[ \left \{\left \{y(x)\to -x \log \left (\frac {-c_1-\frac {x^3}{3}+\frac {x^2}{2}-x+\log (x+1)}{x}\right )\right \}\right \} \]
Maple: cpu = 0.436 (sec), leaf count = 36 \[ \left \{ y \left ( x \right ) =-\ln \left ( {\frac {-2\,{x}^{3}+3\,{x}^{ 2}+6\,\ln \left ( 1+x \right ) -6\,{\it \_C1}-6\,x}{6\,x}} \right ) x \right \} \]