\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {6\,{x}^{2}y \left ( x \right ) -2\,x+1-5\,{x}^{3} \left ( y \left ( x \right ) \right ) ^{2}-2\,xy \left ( x \right ) + \left ( y \left ( x \right ) \right ) ^{3}{x}^{4}}{{x}^{2} \left ( {x}^{2}y \left ( x \right ) -x+1 \right ) }}=0} \]
Mathematica: cpu = 0.020003 (sec), leaf count = 78 \[ \left \{\left \{y(x)\to \frac {1}{x^4 \left (\frac {1}{x^2}-\frac {1}{x^2 \sqrt {c_1+\frac {2}{x}}}\right )}+\frac {x-1}{x^2}\right \},\left \{y(x)\to \frac {1}{x^4 \left (\frac {1}{x^2 \sqrt {c_1+\frac {2}{x}}}+\frac {1}{x^2}\right )}+\frac {x-1}{x^2}\right \}\right \} \]
Maple: cpu = 0.031 (sec), leaf count = 79 \[ \left \{ y \left ( x \right ) ={\frac {1}{{x}^{2}} \left ( \sqrt {{\frac {x{\it \_C1}+2}{x}}}x-x+1 \right ) \left ( \sqrt {{\frac {x{\it \_C1}+2 }{x}}}-1 \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{{x}^{2}} \left ( \sqrt {{\frac {x{\it \_C1}+2}{x}}}x+x-1 \right ) \left ( \sqrt {{\frac {x{\it \_C1}+2}{x}}}+1 \right ) ^{-1}} \right \} \]