\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {{x}^{3}{{\rm e}^{y \left ( x \right ) }}+{x}^{4}+{{\rm e}^{y \left ( x \right ) }}y \left ( x \right ) -{{\rm e}^{y \left ( x \right ) }}\ln \left ( {{\rm e}^{y \left ( x \right ) }}+x \right ) +xy \left ( x \right ) -\ln \left ( {{\rm e}^{y \left ( x \right ) }}+x \right ) x+x}{{x}^{2}}}=0} \]
Mathematica: cpu = 2.217281 (sec), leaf count = 33 \[ \left \{\left \{y(x)\to -\log \left (\frac {e^{-c_1 x-\frac {x^3}{2}}}{x}-\frac {1}{x}\right )\right \}\right \} \]
Maple: cpu = 1.544 (sec), leaf count = 32 \[ \left \{ y \left ( x \right ) ={\frac {{x}^{3}}{2}}+x{\it \_C1}+\ln \left ( -{x \left ( -1+{{\rm e}^{{\frac {{x}^{3}}{2}}}}{{\rm e}^{x{\it \_C1}}} \right ) ^{-1}} \right ) \right \} \]