\[ \boxed { \left \{ {\frac {\rm d}{{\rm d}t}}x \left ( t \right ) =6\,x \left ( t \right ) -72\,y \left ( t \right ) +44\,z \left ( t \right ) ,{\frac {\rm d}{{\rm d}t}}y \left ( t \right ) =4\,x \left ( t \right ) -4\,y \left ( t \right ) +26\,z \left ( t \right ) ,{\frac {\rm d}{{\rm d}t}}z \left ( t \right ) =6\,x \left ( t \right ) -63\,y \left ( t \right ) +38\,z \left ( t \right ) \right \} } \]
Mathematica: cpu = 0.019502 (sec), leaf count = 551
Result too large for latex to process
Maple: cpu = 0.468 (sec), leaf count = 3207 \[ \left \{ \left \{ x \left ( t \right ) ={\it \_C2}\,{{\rm e}^{{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}} +80\,\sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}\sin \left ( {\frac {t\sqrt {3} \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} }+3542\,\sqrt {3}t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +{\it \_C3}\,{{\rm e}^{{\frac { \left ( \left ( 263474+18\, \sqrt {351406311} \right ) ^{{\frac {2}{3}}}+80\,\sqrt [3]{263474+18\, \sqrt {351406311}}-3542 \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt { 351406311}}}}}}\cos \left ( {\frac {t\sqrt {3}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542\,\sqrt {3}t}{6 \,\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) +{\it \_C1}\,{ {\rm e}^{-{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}-40\,\sqrt [3]{263474+18\,\sqrt {351406311}} -3542 \right ) t}{3\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}},y \left ( t \right ) =-{\frac { \left ( 99\, \left ( 263474+18\,\sqrt { 351406311} \right ) ^{4/3}\sqrt {351406311}+1449107\, \left ( 263474+18 \,\sqrt {351406311} \right ) ^{4/3}-563112\,\sqrt {351406311}\sqrt [3]{ 4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+26522496 \,\sqrt {351406311}\sqrt [3]{263474+18\,\sqrt {351406311}}-8242520616 \, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}-2703755988\, \sqrt {351406311}+388221561728\,\sqrt [3]{263474+18\,\sqrt {351406311} }-58061910038292 \right ) {\it \_C1}}{2504844\,\sqrt {351406311}\sqrt [ 3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+ 36664514892\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}}{ {\rm e}^{-{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}-40\,\sqrt [3]{263474+18\,\sqrt {351406311}} -3542 \right ) t}{3\,\sqrt [3]{263474+18\,\sqrt {351406311}}}}}}}+ \left ( {\frac {{\it \_C3}}{5009688\,\sqrt {351406311}\sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+ 73329029784\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}} \left ( 99\,\sqrt {351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}} } \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}+1449107 \,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{ \sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \left ( 263474+18\, \sqrt {351406311} \right ) ^{4/3}+1126224\,\sqrt {351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{ 263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+26522496\,\sqrt {351406311} \cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{ \sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{263474+18 \,\sqrt {351406311}}+5845158\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}} } \right ) \sqrt {3}\sqrt [3]{ \left ( 91637096720+4742532\,\sqrt { 351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+ 594\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{ \sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {117135437} \sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+16485041232\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{ 263474+18\,\sqrt {351406311}}}} \right ) \left ( 263474+18\,\sqrt { 351406311} \right ) ^{2/3}-2703755988\,\sqrt {351406311}\cos \left ( 1/6 \,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) +10697961816468\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt { 351406311}}}} \right ) \sqrt {3}+5918679936\,\sin \left ( 1/6\,{\frac { \sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt { 351406311}}}} \right ) \sqrt {117135437}+404352\,\sin \left ( 1/6\,{ \frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \sqrt {41162131803542907}+730862676\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{ 263474+18\,\sqrt {351406311}}}} \right ) \sqrt {1054218933}+ 388221561728\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3] {263474+18\,\sqrt {351406311}}-58061910038292\,\cos \left ( 1/6\,{ \frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \right ) }+{\frac {{\it \_C2}}{5009688\, \sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+73329029784\, \left ( 263474+18\,\sqrt { 351406311} \right ) ^{2/3}} \left ( 99\,\sqrt {351406311}\sin \left ( 1/6 \,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}+1449107\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} }+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}+1126224\,\sqrt { 351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3] {4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+ 26522496\,\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} }+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}+16485041232\,\sin \left ( 1/6\, {\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}-5845158\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} }+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {3}\sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}-594\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{ 263474+18\,\sqrt {351406311}}}} \right ) \sqrt {117135437}\sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+ 9\,\sqrt {351406311} \right ) ^{2}}-2703755988\,\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{ 263474+18\,\sqrt {351406311}}}} \right ) +388221561728\,\sin \left ( 1/6 \,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}- 10697961816468\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4 }\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {3} -5918679936\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt { 117135437}-404352\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3 ]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt { 41162131803542907}-730862676\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}} } \right ) \sqrt {1054218933}-58061910038292\,\sin \left ( 1/6\,{\frac { \sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt { 351406311}}}} \right ) \right ) } \right ) {{\rm e}^{{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}+80\, \sqrt [3]{263474+18\,\sqrt {351406311}}-3542 \right ) t}{6\,\sqrt [3]{ 263474+18\,\sqrt {351406311}}}}}},z \left ( t \right ) =-{\frac { \left ( 9\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}\sqrt { 351406311}+131737\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3} -74385\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}-1322937\,\sqrt {351406311}\sqrt [3]{ 263474+18\,\sqrt {351406311}}-1088806305\, \left ( 263474+18\,\sqrt { 351406311} \right ) ^{2/3}+309726954\,\sqrt {351406311}-19364416841\, \sqrt [3]{263474+18\,\sqrt {351406311}}+5455680825948 \right ) {\it \_C1}}{139158\,\sqrt {351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9 \,\sqrt {351406311} \right ) ^{2}}+2036917494\, \left ( 263474+18\, \sqrt {351406311} \right ) ^{2/3}}{{\rm e}^{-{\frac { \left ( \left ( 263474+18\,\sqrt {351406311} \right ) ^{{\frac {2}{3}}}-40\,\sqrt [3]{ 263474+18\,\sqrt {351406311}}-3542 \right ) t}{3\,\sqrt [3]{263474+18\, \sqrt {351406311}}}}}}}+ \left ( {\frac {{\it \_C3}}{278316\,\sqrt { 351406311}\sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+4073834988\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}} \left ( 9\,\sqrt {351406311}\cos \left ( 1/6\,{\frac { \sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt { 351406311}}}} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4 /3}+131737\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}+148770\,\sqrt {351406311} \cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{ \sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{4}\sqrt [3 ]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}-1322937\,\sqrt { 351406311}\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3] {263474+18\,\sqrt {351406311}}+116481\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}} } \right ) \sqrt {3}\sqrt [3]{ \left ( 91637096720+4742532\,\sqrt { 351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+ 54\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{ \sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt {117135437} \sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+2177612610\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{ 263474+18\,\sqrt {351406311}}}} \right ) \left ( 263474+18\,\sqrt { 351406311} \right ) ^{2/3}+309726954\,\sqrt {351406311}\cos \left ( 1/6 \,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) -3093176197095\,\sin \left ( 1/6\,{\frac { \sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt { 351406311}}}} \right ) \sqrt {3}-295222617\,\sin \left ( 1/6\,{\frac { \sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt { 351406311}}}} \right ) \sqrt {117135437}-20169\,\sin \left ( 1/6\,{ \frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \sqrt {41162131803542907}-211319415\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{ 263474+18\,\sqrt {351406311}}}} \right ) \sqrt {1054218933}-19364416841 \,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{ \sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3]{263474+18 \,\sqrt {351406311}}+5455680825948\,\cos \left ( 1/6\,{\frac {\sqrt {3} t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}} } \right ) \right ) }+{\frac {{\it \_C2}}{278316\,\sqrt {351406311} \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2} }+4073834988\, \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}} \left ( 9\,\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}} } \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{4/3}+131737\, \sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{ \sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \left ( 263474+18\, \sqrt {351406311} \right ) ^{4/3}+148770\,\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9 \,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}-1322937\,\sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9 \,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \sqrt [3]{263474+18\,\sqrt {351406311}}+ 2177612610\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \left ( 263474+18\,\sqrt {351406311} \right ) ^{2/3}-116481\,\cos \left ( 1/6\,{ \frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \sqrt {3}\sqrt [3]{ \left ( 91637096720+ 4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}-54\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3 ]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt { 117135437}\sqrt [3]{ \left ( 91637096720+4742532\,\sqrt {351406311} \right ) \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+309726954\, \sqrt {351406311}\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{ 4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) - 19364416841\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \sqrt [3] {263474+18\,\sqrt {351406311}}+3093176197095\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt { 351406311}}}} \right ) \sqrt {3}+295222617\,\cos \left ( 1/6\,{\frac { \sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt { 351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt { 351406311}}}} \right ) \sqrt {117135437}+20169\,\cos \left ( 1/6\,{ \frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\, \sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\, \sqrt {351406311}}}} \right ) \sqrt {41162131803542907}+211319415\,\cos \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4}\sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{ 263474+18\,\sqrt {351406311}}}} \right ) \sqrt {1054218933}+ 5455680825948\,\sin \left ( 1/6\,{\frac {\sqrt {3}t \left ( \sqrt [3]{4} \sqrt [3]{ \left ( 131737+9\,\sqrt {351406311} \right ) ^{2}}+3542 \right ) }{\sqrt [3]{263474+18\,\sqrt {351406311}}}} \right ) \right ) } \right ) {{\rm e}^{{\frac { \left ( \left ( 263474+18\,\sqrt { 351406311} \right ) ^{{\frac {2}{3}}}+80\,\sqrt [3]{263474+18\,\sqrt { 351406311}}-3542 \right ) t}{6\,\sqrt [3]{263474+18\,\sqrt {351406311}} }}}} \right \} \right \} \]