\[ \boxed { {x}^{2}{\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}y \left ( x \right ) + \left ( x+3 \right ) x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -y \left ( x \right ) =0} \]
Mathematica: cpu = 0.028004 (sec), leaf count = 80 \[ \left \{\left \{y(x)\to c_1 U\left (2+\sqrt {2},1+2 \sqrt {2},x\right ) e^{\left (\sqrt {2}-1\right ) \log (x)-x}+c_2 L_{-2-\sqrt {2}}^{2 \sqrt {2}}(x) e^{\left (\sqrt {2}-1\right ) \log (x)-x}\right \}\right \} \]
Maple: cpu = 0.078 (sec), leaf count = 94 \[ \left \{ y \left ( x \right ) ={{\it \_C1}{{\rm e}^{-{\frac {x}{2}}}} \left ( \left ( \sqrt {2}+x+1 \right ) {{\sl I}_{-{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )}+ \left ( -\sqrt {2}+x+1 \right ) { {\sl I}_{{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )} \right ) {\frac {1}{\sqrt {x}}}}+{{\it \_C2}{{\rm e}^{-{\frac {x}{2}}} } \left ( \left ( \sqrt {2}+x+1 \right ) {{\sl K}_{-{\frac {1}{2}}+ \sqrt {2}}\left ({\frac {x}{2}}\right )}-{{\sl K}_{{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )} \left ( -\sqrt {2}+x+1 \right ) \right ) {\frac {1}{\sqrt {x}}}} \right \} \]