\[ -\text {Global$\grave { }$x}^2+\text {Global$\grave { }$x} \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})^2+\text {Global$\grave { }$y}(\text {Global$\grave { }$x}) \text {Global$\grave { }$y}'(\text {Global$\grave { }$x})=0 \] ✗ Mathematica : cpu = 3599.94 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.193 (sec), leaf count = 337
\[ \left \{ \int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( y \left ( x \right ) +\sqrt {4\,{{\it \_a}}^{3}+ \left ( y \left ( x \right ) \right ) ^{2}} \right ) \left ( \sqrt {4\,{{\it \_a}}^{3}+ \left ( y \left ( x \right ) \right ) ^{2}}+4\,y \left ( x \right ) \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!-2\,{\frac {1}{\sqrt {4\,{x}^{3}+{{\it \_f}}^{2}}+4\,{\it \_f}} \left ( 6\,\int _{{\it \_b}}^{x}\!{\frac {{{\it \_a}}^{2}}{ \left ( \sqrt {4\,{{\it \_a}}^{3}+{{\it \_f}}^{2}}+4\,{\it \_f} \right ) ^{2}\sqrt {4\,{{\it \_a}}^{3}+{{\it \_f}}^{2}}}}\,{\rm d}{\it \_a}\sqrt {4\,{x}^{3}+{{\it \_f}}^{2}}+24\,\int _{{\it \_b}}^{x}\!{\frac {{{\it \_a}}^{2}}{ \left ( \sqrt {4\,{{\it \_a}}^{3}+{{\it \_f}}^{2}}+4\,{\it \_f} \right ) ^{2}\sqrt {4\,{{\it \_a}}^{3}+{{\it \_f}}^{2}}}}\,{\rm d}{\it \_a}{\it \_f}+1 \right ) }{d{\it \_f}}+{\it \_C1}=0,\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( -y \left ( x \right ) +\sqrt {4\,{{\it \_a}}^{3}+ \left ( y \left ( x \right ) \right ) ^{2}} \right ) \left ( -4\,y \left ( x \right ) +\sqrt {4\,{{\it \_a}}^{3}+ \left ( y \left ( x \right ) \right ) ^{2}} \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!2\,{\frac {1}{-4\,{\it \_f}+\sqrt {4\,{x}^{3}+{{\it \_f}}^{2}}} \left ( 6\,\int _{{\it \_b}}^{x}\!{\frac {{{\it \_a}}^{2}}{ \left ( -4\,{\it \_f}+\sqrt {4\,{{\it \_a}}^{3}+{{\it \_f}}^{2}} \right ) ^{2}\sqrt {4\,{{\it \_a}}^{3}+{{\it \_f}}^{2}}}}\,{\rm d}{\it \_a}\sqrt {4\,{x}^{3}+{{\it \_f}}^{2}}-24\,\int _{{\it \_b}}^{x}\!{\frac {{{\it \_a}}^{2}}{ \left ( -4\,{\it \_f}+\sqrt {4\,{{\it \_a}}^{3}+{{\it \_f}}^{2}} \right ) ^{2}\sqrt {4\,{{\it \_a}}^{3}+{{\it \_f}}^{2}}}}\,{\rm d}{\it \_a}{\it \_f}+1 \right ) }{d{\it \_f}}+{\it \_C1}=0 \right \} \]