\[ \text {Global$\grave { }$y}'(\text {Global$\grave { }$x}) (\text {Global$\grave { }$x} \sin (\text {Global$\grave { }$y}(\text {Global$\grave { }$x}))-1)+\cos (\text {Global$\grave { }$y}(\text {Global$\grave { }$x}))=0 \] ✓ Mathematica : cpu = 0.0616698 (sec), leaf count = 145
\[\left \{\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\cos ^{-1}\left (\frac {c_1 \text {Global$\grave { }$x}-\sqrt {c_1^2-\text {Global$\grave { }$x}^2+1}}{c_1^2+1}\right )\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \cos ^{-1}\left (\frac {c_1 \text {Global$\grave { }$x}-\sqrt {c_1^2-\text {Global$\grave { }$x}^2+1}}{c_1^2+1}\right )\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to -\cos ^{-1}\left (\frac {\sqrt {c_1^2-\text {Global$\grave { }$x}^2+1}+c_1 \text {Global$\grave { }$x}}{c_1^2+1}\right )\right \},\left \{\text {Global$\grave { }$y}(\text {Global$\grave { }$x})\to \cos ^{-1}\left (\frac {\sqrt {c_1^2-\text {Global$\grave { }$x}^2+1}+c_1 \text {Global$\grave { }$x}}{c_1^2+1}\right )\right \}\right \}\]
✓ Maple : cpu = 0.044 (sec), leaf count = 115
\[ \left \{ y \left ( x \right ) =\arctan \left ( {\frac {{\it \_C1}}{{{\it \_C1}}^{2}+1} \left ( -{\it \_C1}\,x+\sqrt {{{\it \_C1}}^{2}-{x}^{2}+1} \right ) }+x,-{\frac {1}{{{\it \_C1}}^{2}+1} \left ( -{\it \_C1}\,x+\sqrt {{{\it \_C1}}^{2}-{x}^{2}+1} \right ) } \right ) ,y \left ( x \right ) =\arctan \left ( -{\frac {{\it \_C1}}{{{\it \_C1}}^{2}+1} \left ( {\it \_C1}\,x+\sqrt {{{\it \_C1}}^{2}-{x}^{2}+1} \right ) }+x,{\frac {1}{{{\it \_C1}}^{2}+1} \left ( {\it \_C1}\,x+\sqrt {{{\it \_C1}}^{2}-{x}^{2}+1} \right ) } \right ) \right \} \]