2.24   ODE No. 24

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ a y(x)^2-b x^{\nu }+y'(x)=0 \] Mathematica : cpu = 0.0134888 (sec), leaf count = 277

\[\left \{\left \{y(x)\to -\frac {\sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}} \left (c_1 J_{\frac {\nu +1}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu }{2}+1}}{\nu +2}\right )-c_1 J_{-\frac {\nu +3}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )-2 J_{\frac {1}{\nu +2}-1}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )\right )-c_1 J_{-\frac {1}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )}{2 a x \left (c_1 J_{-\frac {1}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )+J_{\frac {1}{\nu +2}}\left (\frac {2 \sqrt {-a} \sqrt {b} x^{\frac {\nu +2}{2}}}{\nu +2}\right )\right )}\right \}\right \}\]

Maple : cpu = 0.155 (sec), leaf count = 214

\[ \left \{ y \left ( x \right ) ={\frac {1}{ax} \left ( -{{\sl J}_{{\frac {3+\nu }{\nu +2}}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}}\right )}{x}^{{\frac {\nu }{2}}+1}\sqrt {-ab}{\it \_C1}-{{\sl Y}_{{\frac {3+\nu }{\nu +2}}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}}\right )}\sqrt {-ab}{x}^{{\frac {\nu }{2}}+1}+{\it \_C1}\,{{\sl J}_{ \left ( \nu +2 \right ) ^{-1}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}}\right )}+{{\sl Y}_{ \left ( \nu +2 \right ) ^{-1}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}}\right )} \right ) \left ( {\it \_C1}\,{{\sl J}_{ \left ( \nu +2 \right ) ^{-1}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}}\right )}+{{\sl Y}_{ \left ( \nu +2 \right ) ^{-1}}\left (2\,{\frac {\sqrt {-ab}{x}^{\nu /2+1}}{\nu +2}}\right )} \right ) ^{-1}} \right \} \]

Hand solution

\begin {align} y^{\prime }+ay^{2}-bx^{v} & =0\nonumber \\ y^{\prime } & =bx^{v}-ay^{2}\tag {1}\\ & =P\left ( x\right ) +Q\left ( x\right ) y+R\left ( x\right ) y^{2}\nonumber \end {align}

This is Riccati first order non-linear ODE with \(P\left ( x\right ) =bx^{v},Q\left ( x\right ) =0,R\left ( x\right ) =-a\). Using the standard substitution

\[ y=-\frac {u^{\prime }}{uR\left ( x\right ) }=\frac {u^{\prime }}{au}\]

Hence

\[ y^{\prime }=\frac {u^{\prime \prime }}{au}-\frac {\left ( u^{\prime }\right ) ^{2}}{au^{2}}\]

Therefore (1) becomes

\begin {align*} \frac {u^{\prime \prime }}{au}-\frac {\left ( u^{\prime }\right ) ^{2}}{au^{2}} & =bx^{v}-ay^{2}\\ & =bx^{v}-a\left ( \frac {u^{\prime }}{au}\right ) ^{2}\\ & =bx^{v}-\frac {\left ( u^{\prime }\right ) ^{2}}{au^{2}} \end {align*}

Hence

\begin {align*} \frac {u^{\prime \prime }}{au} & =bx^{v}\\ u^{\prime \prime }-abx^{v}u & =0 \end {align*}

This is an Emden-Fowler equation, of the general form \(u^{\prime \prime }=Ax^{n}u^{m}\), where here \(m=1\) and \(n=v\) and \(A=ab\).

For any \(n\), the solution uses Bessel functions and modified Bessel functions of first and second kind. From Handbook of exact solutions for ODE, page 237, equation 2.1.2.7 we see the solution is given as

\[ u=\left \{ \begin {array} [c]{ccc}C_{1}\sqrt {x}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +C_{2}\sqrt {x}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) & & ab<0\\ C_{1}\sqrt {x}I_{\frac {1}{2q}}\left ( \frac {\sqrt {ab}}{q}x^{q}\right ) +C_{2}\sqrt {x}K_{\frac {1}{2q}}\left ( \frac {\sqrt {ab}}{q}x^{q}\right ) & & ab>0 \end {array} \right . \]

Where \(q=\frac {n+1}{2}\). \(J\) is Bessel function of first kind and \(Y\) is Bessel function of second kind. \(I\) is modified Besself function of first kind and \(K\) is modified Besself function of second kind. To find \(y\) we now use \(y=\frac {u^{\prime }}{au}\). Derivative of Bessel functions is given by

\begin {align*} J_{m}^{\prime }\left ( x\right ) & =\frac {1}{2}\left ( J_{m-1}\left ( x\right ) -J_{m+1}\left ( x\right ) \right ) \\ Y_{m}^{\prime }\left ( x\right ) & =\frac {1}{2}\left ( Y_{m-1}\left ( x\right ) -Y_{m+1}\left ( x\right ) \right ) \\ I_{m}^{\prime }\left ( x\right ) & =\frac {1}{2}\left ( I_{m-1}\left ( x\right ) +I_{m+1}\left ( x\right ) \right ) \\ K_{m}^{\prime }\left ( x\right ) & =-\frac {1}{2}\left ( K_{m-1}\left ( x\right ) +K_{m+1}\left ( x\right ) \right ) \end {align*}

Using these, then

\[ u^{\prime }=\left \{ \begin {array} [c]{ccc}C_{1}\left [ \frac {1}{2\sqrt {x}}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +\sqrt {x}J_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ] +C_{2}\left [ \frac {1}{2\sqrt {x}}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +\sqrt {x}Y_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ] & & ab<0\\ C_{1}\left [ \frac {1}{2\sqrt {x}}I_{\frac {1}{2q}}\left ( \frac {\sqrt {ab}}{q}x^{q}\right ) +\sqrt {x}I_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {ab}}{q}x^{q}\right ) \right ] +C_{2}\left [ \frac {1}{2\sqrt {x}}K_{\frac {1}{2q}}\left ( \frac {\sqrt {ab}}{q}x^{q}\right ) +\sqrt {x}K_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {ab}}{q}x^{q}\right ) \right ] & & ab>0 \end {array} \right . \]

Hence for \(ab<0\)

\begin {align*} y & =\frac {u^{\prime }}{au}\\ & =\frac {C_{1}\left [ \frac {1}{2\sqrt {x}}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +\sqrt {x}J_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ] +C_{2}\left [ \frac {1}{2\sqrt {x}}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +\sqrt {x}Y_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ] }{aC_{1}\sqrt {x}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +aC_{2}\sqrt {x}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) }\\ & =\frac {\sqrt {x}C_{1}\left [ \frac {1}{2x}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +J_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ] +\sqrt {x}C_{2}\left [ \frac {1}{2x}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +Y_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ] }{aC_{1}\sqrt {x}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +aC_{2}\sqrt {x}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) }\\ & =\frac {C_{1}\left [ \frac {1}{2x}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +J_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ] +C_{2}\left [ \frac {1}{2x}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +Y_{\frac {1}{2q}}^{\prime }\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ] }{aC_{1}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +aC_{2}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) } \end {align*}

Using derivatives the above becomes

\begin {align*} y & =\frac {C_{1}\left [ \frac {1}{2x}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +\frac {1}{2}\left ( J_{\frac {1}{2q}-1}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) -J_{\frac {1}{2q}+1}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ) \right ] }{aC_{1}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +aC_{2}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) }\\ & +\frac {C_{2}\left [ \frac {1}{2x}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +\frac {1}{2}\left ( Y_{\frac {1}{2q}-1}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) -Y_{\frac {1}{2q}+1}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) \right ) \right ] }{aC_{1}J_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) +aC_{2}Y_{\frac {1}{2q}}\left ( \frac {\sqrt {-ab}}{q}x^{q}\right ) } \end {align*}

Similar result can be found for \(ab>0\)