\[ y(x) \left (a x^2+b x+c+x f'(x)+f(x)^2-f(x)\right )+2 x f(x) y'(x)+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 385.652 (sec), leaf count = 216
\[\left \{\left \{y(x)\to c_1 U\left (-\frac {-i b-\sqrt {a}-\sqrt {a} \sqrt {1-4 c}}{2 \sqrt {a}},\sqrt {1-4 c}+1,2 i \sqrt {a} x\right ) \exp \left (\int _1^x \frac {-2 i \sqrt {a} K[1]-2 f(K[1])+\sqrt {1-4 c}+1}{2 K[1]} \, dK[1]\right )+c_2 L_{\frac {-\sqrt {a} \sqrt {1-4 c}-\sqrt {a}-i b}{2 \sqrt {a}}}^{\sqrt {1-4 c}}\left (2 i \sqrt {a} x\right ) \exp \left (\int _1^x \frac {-2 i \sqrt {a} K[1]-2 f(K[1])+\sqrt {1-4 c}+1}{2 K[1]} \, dK[1]\right )\right \}\right \}\]
✓ Maple : cpu = 0.079 (sec), leaf count = 79
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\sl M}_{{-{\frac {i}{2}}b{\frac {1}{\sqrt {a}}}},\,{\frac {1}{2}\sqrt {1-4\,c}}}\left (2\,i\sqrt {a}x\right )}{{\rm e}^{-\int \!{\frac {f \left ( x \right ) }{x}}\,{\rm d}x}}+{\it \_C2}\,{{\sl W}_{{-{\frac {i}{2}}b{\frac {1}{\sqrt {a}}}},\,{\frac {1}{2}\sqrt {1-4\,c}}}\left (2\,i\sqrt {a}x\right )}{{\rm e}^{-\int \!{\frac {f \left ( x \right ) }{x}}\,{\rm d}x}} \right \} \]