2.998   ODE No. 998

\[ y'(x)=\frac {(-\operatorname {CosIntegral}(x)+y(x)-\log (x))^2+\cos (x)}{x} \] Mathematica : cpu = 0.337364 (sec), leaf count = 27

DSolve[Derivative[1][y][x] == (Cos[x] + (-CosIntegral[x] - Log[x] + y[x])^2)/x,y[x],x]
 

\[\left \{\left \{y(x)\to \operatorname {CosIntegral}(x)+\frac {x^2}{-\frac {x^2}{2}+c_1}+\log (x)+1\right \}\right \}\] Maple : cpu = 0.377 (sec), leaf count = 27

dsolve(diff(y(x),x) = ((y(x)-ln(x)-Ci(x))^2+cos(x))/x,y(x))
 

\[y \left (x \right ) = \ln \left (x \right )+\operatorname {Ci}\left (x \right )+\frac {-x^{2} c_{1}+1}{x^{2} c_{1}+1}\]