\[ y'(x)=\frac {-x^3+4 x^2-4 x y(x)-4 x+8}{2 x^2+8 y(x)-8 x+8} \] ✓ Mathematica : cpu = 0.0241601 (sec), leaf count = 33
DSolve[Derivative[1][y][x] == (8 - 4*x + 4*x^2 - x^3 - 4*x*y[x])/(8 - 8*x + 2*x^2 + 8*y[x]),y[x],x]
\[\left \{\left \{y(x)\to W\left (-e^{-x-1+c_1}\right )+\frac {1}{4} \left (-x^2+4 x-4\right )+1\right \}\right \}\] ✓ Maple : cpu = 0.08 (sec), leaf count = 18
dsolve(diff(y(x),x) = (-4*x*y(x)-x^3+4*x^2-4*x+8)/(8*y(x)+2*x^2-8*x+8),y(x))
\[y \left (x \right ) = -\frac {x^{2}}{4}+\operatorname {LambertW}\left ({\mathrm e}^{-x} c_{1}\right )+x\]