2.728   ODE No. 728

\[ y'(x)=\frac {y(x) \left (x^3+3 y(x)^2\right )}{x \left (6 y(x)^2+x\right )} \] Mathematica : cpu = 0.19918 (sec), leaf count = 72

DSolve[Derivative[1][y][x] == (y[x]*(x^3 + 3*y[x]^2))/(x*(x + 6*y[x]^2)),y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{x^2+2 c_1}}{x}\right )}}{\sqrt {6}}\right \},\left \{y(x)\to \frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{x^2+2 c_1}}{x}\right )}}{\sqrt {6}}\right \}\right \}\] Maple : cpu = 0.396 (sec), leaf count = 50

dsolve(diff(y(x),x) = 1/(6*y(x)^2+x)*(x^3+3*y(x)^2)*y(x)/x,y(x))
 

\[\frac {1}{\frac {1}{y \left (x \right )^{2}}+\frac {6}{x}} = \frac {\left ({\mathrm e}^{\operatorname {RootOf}\left ({\mathrm e}^{\textit {\_Z}} x^{2}-{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {\left ({\mathrm e}^{\textit {\_Z}}+9\right ) x}{2}\right )+3 \,{\mathrm e}^{\textit {\_Z}} c_{1}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+9\right )}+9\right ) x}{54}\]