2.710   ODE No. 710

\[ y'(x)=\frac {2 x^3+4 x^2 y(x)+2 x y(x)^2+2 x+e^{\frac {1}{x}}-\log (x)}{\log (x)-e^{\frac {1}{x}}} \] Mathematica : cpu = 0.793711 (sec), leaf count = 38

DSolve[Derivative[1][y][x] == (E^x^(-1) + 2*x + 2*x^3 - Log[x] + 4*x^2*y[x] + 2*x*y[x]^2)/(-E^x^(-1) + Log[x]),y[x],x]
 

\[\left \{\left \{y(x)\to -x+\tan \left (\int _1^x-\frac {2 K[5]}{e^{\frac {1}{K[5]}}-\log (K[5])}dK[5]+c_1\right )\right \}\right \}\] Maple : cpu = 2.527 (sec), leaf count = 31

dsolve(diff(y(x),x) = (-ln(x)+exp(1/x)+4*x^2*y(x)+2*x+2*x*y(x)^2+2*x^3)/(ln(x)-exp(1/x)),y(x))
 

\[y \left (x \right ) = -x +\tan \left (2 c_{1}-2 \left (\int -\frac {x}{\ln \left (x \right )-{\mathrm e}^{\frac {1}{x}}}d x \right )\right )\]