2.700   ODE No. 700

\[ y'(x)=\frac {1}{x y(x) \left (x y(x)^2+x+1\right )} \] Mathematica : cpu = 0.139769 (sec), leaf count = 76

DSolve[Derivative[1][y][x] == 1/(x*y[x]*(1 + x + x*y[x]^2)),y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {\sqrt {2 x W\left (c_1 e^{\frac {1}{2 x}-\frac {1}{2}}\right )+x-1}}{\sqrt {x}}\right \},\left \{y(x)\to \frac {\sqrt {2 x W\left (c_1 e^{\frac {1}{2 x}-\frac {1}{2}}\right )+x-1}}{\sqrt {x}}\right \}\right \}\] Maple : cpu = 0.099 (sec), leaf count = 62

dsolve(diff(y(x),x) = 1/x/(x*y(x)^2+1+x)/y(x),y(x))
 

\[y \left (x \right ) = \frac {\sqrt {x \left (2 \operatorname {LambertW}\left (\frac {c_{1} {\mathrm e}^{-\frac {x -1}{2 x}}}{2}\right ) x +x -1\right )}}{x}\]