2.695   ODE No. 695

\[ y'(x)=\frac {x^4+x^3+x^2 y(x)^2+x y(x)^2+y(x) \log (x-1)}{x \log (x-1)} \] Mathematica : cpu = 0.174548 (sec), leaf count = 34

DSolve[Derivative[1][y][x] == (x^3 + x^4 + Log[-1 + x]*y[x] + x*y[x]^2 + x^2*y[x]^2)/(x*Log[-1 + x]),y[x],x]
 

\[\{\{y(x)\to x \tan (2 \operatorname {ExpIntegralEi}(\log (x-1))+3 \operatorname {ExpIntegralEi}(2 \log (x-1))+\operatorname {ExpIntegralEi}(3 \log (x-1))+c_1)\}\}\] Maple : cpu = 0.056 (sec), leaf count = 39

dsolve(diff(y(x),x) = (y(x)*ln(x-1)+x^4+x^3+y(x)^2*x^2+x*y(x)^2)/ln(x-1)/x,y(x))
 

\[y \left (x \right ) = \tan \left (-\operatorname {expIntegral}_{1}\left (-3 \ln \left (x -1\right )\right )-3 \,\operatorname {expIntegral}_{1}\left (-2 \ln \left (x -1\right )\right )-2 \,\operatorname {expIntegral}_{1}\left (-\ln \left (x -1\right )\right )+c_{1}\right ) x\]