2.489   ODE No. 489

\[ a y(x)^2+b x+c+y(x)^2 y'(x)^2+2 x y(x) y'(x)=0 \] Mathematica : cpu = 300.138 (sec), leaf count = 0

DSolve[c + b*x + a*y[x]^2 + 2*x*y[x]*Derivative[1][y][x] + y[x]^2*Derivative[1][y][x]^2 == 0,y[x],x]
 

, timed out

$Aborted

Maple : cpu = 1.214 (sec), leaf count = 549

dsolve(y(x)^2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+a*y(x)^2+b*x+c = 0,y(x))
 

\[y \left (x \right ) = -\frac {2 \sqrt {a \left (a \left (a x -\frac {1}{2} b +x \right )^{2} \left (a +1\right )^{2} \operatorname {RootOf}\left (-b \ln \left (2 a x -b +2 x \right )+2 \left (\int _{}^{\textit {\_Z}}-\frac {b \left (4 \textit {\_a} \,a^{2}+\sqrt {-\left (4 \textit {\_a} \,a^{3}+8 \textit {\_a} \,a^{2}+4 \textit {\_a} a -1\right ) {\mathrm e}^{\frac {4 a +4}{b}}}\, {\mathrm e}^{-\frac {2 \left (a +1\right )}{b}}+8 \textit {\_a} a +4 \textit {\_a} +1\right )}{4 \textit {\_a} \left (4 \textit {\_a} \,a^{2}+8 \textit {\_a} a +4 \textit {\_a} +a +2\right ) \left (a +1\right )}d \textit {\_a} \right ) a +2 c_{1} a +2 \left (\int _{}^{\textit {\_Z}}-\frac {b \left (4 \textit {\_a} \,a^{2}+\sqrt {-\left (4 \textit {\_a} \,a^{3}+8 \textit {\_a} \,a^{2}+4 \textit {\_a} a -1\right ) {\mathrm e}^{\frac {4 a +4}{b}}}\, {\mathrm e}^{-\frac {2 \left (a +1\right )}{b}}+8 \textit {\_a} a +4 \textit {\_a} +1\right )}{4 \textit {\_a} \left (4 \textit {\_a} \,a^{2}+8 \textit {\_a} a +4 \textit {\_a} +a +2\right ) \left (a +1\right )}d \textit {\_a} \right )+2 c_{1}\right )+\frac {\left (-b x -c \right ) a^{2}}{4}+\frac {\left (-\frac {b x}{2}-c \right ) a}{2}-\frac {b^{2}}{16}-\frac {c}{4}\right )}}{a \left (a +1\right )}\]