2.424   ODE No. 424

\[ a y(x) y'(x)+b x+x y'(x)^2=0 \] Mathematica : cpu = 0.744455 (sec), leaf count = 423

DSolve[b*x + a*y[x]*Derivative[1][y][x] + x*Derivative[1][y][x]^2 == 0,y[x],x]
 

\[\left \{\text {Solve}\left [-\frac {i \left (2 \log \left (-i \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {a y(x)}{x}+2 i \sqrt {b}\right )+2 (a+1) \log \left (i \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {a y(x)}{x}-2 i \sqrt {b}\right )-(a+2) \log \left (\frac {i (a+2) y(x) \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}{x}+2 \sqrt {b} \left (\sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}-\frac {i (a+2) y(x)}{x}\right )+\frac {a^2 y(x)^2}{x^2}-4 b\right )\right )}{4 (a+1)}=c_1-\frac {1}{2} i \log (x),y(x)\right ],\text {Solve}\left [\frac {i \left (2 (a+1) \log \left (-i \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {a y(x)}{x}+2 i \sqrt {b}\right )+2 \log \left (i \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {a y(x)}{x}-2 i \sqrt {b}\right )-(a+2) \log \left (-\frac {i (a+2) y(x) \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}{x}+2 \sqrt {b} \left (\sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {i (a+2) y(x)}{x}\right )+\frac {a^2 y(x)^2}{x^2}-4 b\right )\right )}{4 (a+1)}=\frac {1}{2} i \log (x)+c_1,y(x)\right ]\right \}\] Maple : cpu = 0.759 (sec), leaf count = 193

dsolve(x*diff(y(x),x)^2+a*y(x)*diff(y(x),x)+b*x = 0,y(x))
 

\[\frac {-c_{1} \left (a y \left (x \right )-\sqrt {a^{2} y \left (x \right )^{2}-4 b \,x^{2}}\right ) {\left (\frac {a \left (-y \left (x \right ) \left (a +1\right ) \sqrt {a^{2} y \left (x \right )^{2}-4 b \,x^{2}}+\left (a^{2}+a \right ) y \left (x \right )^{2}-2 b \,x^{2}\right )}{2 x^{2}}\right )}^{\frac {-a -2}{2+2 a}}+x^{2}}{x} = 0\]