2.327   ODE No. 327

\[ \left (2 x^2 y(x)^3+x y(x)^4+2 y(x)+x\right ) y'(x)+y(x)^5+y(x)=0 \] Mathematica : cpu = 0.174625 (sec), leaf count = 669

DSolve[y[x] + y[x]^5 + (x + 2*y[x] + 2*x^2*y[x]^3 + x*y[x]^4)*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}{3 \sqrt [3]{2} x}-\frac {\sqrt [3]{2} \left (-3 c_1 x^2-c_1{}^2\right )}{3 x \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}+\frac {c_1}{3 x}\right \},\left \{y(x)\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}{6 \sqrt [3]{2} x}+\frac {\left (1+i \sqrt {3}\right ) \left (-3 c_1 x^2-c_1{}^2\right )}{3\ 2^{2/3} x \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}+\frac {c_1}{3 x}\right \},\left \{y(x)\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}{6 \sqrt [3]{2} x}+\frac {\left (1-i \sqrt {3}\right ) \left (-3 c_1 x^2-c_1{}^2\right )}{3\ 2^{2/3} x \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}+\frac {c_1}{3 x}\right \}\right \}\] Maple : cpu = 0.149 (sec), leaf count = 579

dsolve((x*y(x)^4+2*x^2*y(x)^3+2*y(x)+x)*diff(y(x),x)+y(x)^5+y(x) = 0,y(x))
 

\[y \left (x \right ) = \frac {\left (108 c_{1}^{3} x^{2}+12 \sqrt {3}\, \sqrt {27 x^{2} c_{1}^{4}+4 c_{1} x^{4}+18 x^{2} c_{1}^{2}-x^{2}-4 c_{1}}\, x c_{1}+36 x^{2} c_{1}-8\right )^{\frac {1}{3}}}{6 x c_{1}}-\frac {2 \left (3 x^{2} c_{1}-1\right )}{3 x c_{1} \left (108 c_{1}^{3} x^{2}+12 \sqrt {3}\, \sqrt {27 x^{2} c_{1}^{4}+4 c_{1} x^{4}+18 x^{2} c_{1}^{2}-x^{2}-4 c_{1}}\, x c_{1}+36 x^{2} c_{1}-8\right )^{\frac {1}{3}}}-\frac {1}{3 x c_{1}}\]