2.267   ODE No. 267

\[ y(x) \sin ^2(x) y'(x)+y(x)^2 \sin (x) \cos (x)-1=0 \] Mathematica : cpu = 0.204185 (sec), leaf count = 36

DSolve[-1 + Cos[x]*Sin[x]*y[x]^2 + Sin[x]^2*y[x]*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to -\sqrt {2 x+c_1} \csc (x)\right \},\left \{y(x)\to \sqrt {2 x+c_1} \csc (x)\right \}\right \}\] Maple : cpu = 0.03 (sec), leaf count = 32

dsolve(y(x)*diff(y(x),x)*sin(x)^2+y(x)^2*cos(x)*sin(x)-1 = 0,y(x))
 

\[y \left (x \right ) = \frac {\sqrt {2 x +c_{1}}}{\sin \left (x \right )}\]