2.1839   ODE No. 1839

\[ y^{(3)}(x)-y(x) y''(x)+y'(x)^2=0 \] Mathematica : cpu = 0.016138 (sec), leaf count = 0

DSolve[Derivative[1][y][x]^2 - y[x]*Derivative[2][y][x] + Derivative[3][y][x] == 0,y[x],x]
 

, could not solve

DSolve[Derivative[1][y][x]^2 - y[x]*Derivative[2][y][x] + Derivative[3][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)*y(x)+diff(y(x),x)^2=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left ({\mathrm e}^{\int \textit {\_g} \left (\textit {\_f} \right )d \textit {\_f} +c_{2}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_f}}\textit {\_g} \left (\textit {\_f} \right )=\left (6 \textit {\_f} -1\right ) \textit {\_g} \left (\textit {\_f} \right )^{3}+\frac {\left (7 \textit {\_f} -1\right ) \textit {\_g} \left (\textit {\_f} \right )^{2}}{\textit {\_f}}+\frac {\textit {\_g} \left (\textit {\_f} \right )}{\textit {\_f}}\right \}, \left \{\textit {\_f} =\frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )^{2}}, \textit {\_g} \left (\textit {\_f} \right )=\frac {y \left (x \right )^{2}}{\frac {y \left (x \right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )}{\frac {d}{d x}y \left (x \right )}-2 \frac {d}{d x}y \left (x \right )}\right \}, \left \{x =\int \frac {{\mathrm e}^{\int -\textit {\_g} \left (\textit {\_f} \right )d \textit {\_f} -c_{2}} \textit {\_g} \left (\textit {\_f} \right )}{\textit {\_f}}d \textit {\_f} +c_{1}, y \left (x \right )={\mathrm e}^{\int \textit {\_g} \left (\textit {\_f} \right )d \textit {\_f} +c_{2}}\right \}\right ]\]