2.1713   ODE No. 1713

\[ -y(x) \left (g'(x)-y(x)^2 f'(x)\right )+y'(x) \left (f(x) y(x)^2+g(x)\right )+y(x) y''(x)-y'(x)^2=0 \] Mathematica : cpu = 20.6128 (sec), leaf count = 0

DSolve[-(y[x]*(-(y[x]^2*Derivative[1][f][x]) + Derivative[1][g][x])) + (g[x] + f[x]*y[x]^2)*Derivative[1][y][x] - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-(y[x]*(-(y[x]^2*Derivative[1][f][x]) + Derivative[1][g][x])) + (g[x] + f[x]*y[x]^2)*Derivative[1][y][x] - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2+(g(x)+f(x)*y(x)^2)*diff(y(x),x)-y(x)*(diff(g(x),x)-diff(f(x),x)*y(x)^2)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_}b\left (\textit {\_a} \right )\:\& \text {where}\:\left [\left \{\frac {\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )}{\textit {\_}b\left (\textit {\_a} \right )}+\frac {f \left (\textit {\_a} \right ) \textit {\_}b\left (\textit {\_a} \right )^{2}+\textit {\_}b\left (\textit {\_a} \right ) c_{1}-g \left (\textit {\_a} \right )}{\textit {\_}b\left (\textit {\_a} \right )}=0\right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=y \left (x \right )\right \}, \left \{x =\textit {\_a} , y \left (x \right )=\textit {\_}b\left (\textit {\_a} \right )\right \}\right ]\]